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CHAPTER 1

Installing Delta Lake

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the second chapter of the final book. Please note that the GitHub repo
will be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

In this chapter, we will get you set up with Delta Lake and walk you through simple
steps to get started writing your first standalone application.

There are multiple ways you can install Delta Lake. If you are just starting, using a
single machine with the Delta Lake Docker (https://go.delta.io/dockerhub) image is
the best option. To skip the hassle of a local installation, try Databricks Community
Edition for free, which includes the latest version of Delta Lake. Other options for
using Delta Lake discussed in this chapter include the Delta Rust Python bindings,
Delta Lake Rust API, and Apache SparkTM.

Delta Lake Docker Image
The Delta Lake Docker is a self-contained image with all the necessary components
to read and write with Delta Lake including Python, Rust, PySpark, Apache Spark ,
and Jupyter notebooks. The basic prerequisite is having Docker installed on your
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local machine; please follow the steps at Get Docker. Afterwards, you can either
download the latest version of the Delta Lake docker from DockerHub (https://
go.delta.io/dockerhub) or you can build the docker yourself by following the instruc‐
tions from the Delta Lake Docker GitHub repository (https://go.delta.io/docker).

This is the preferred option to run all the code snippets in this book.

Please note this Docker image comes preinstalled with the following:

• Apache Arrow: Apache Arrow is a development platform for in-memory analyt‐•
ics and aims to provide a standardized, language-independent columnar memory
format for flat and hierarchical data, as well as libraries and tools for working
with this format. It enables fast data processing and movement across different
systems and languages, such as C, C++, C#, Go, Java, JavaScript, Julia, MATLAB,
Python, R, Ruby, and Rust.

• DataFusion: DataFusion created in 2017 and donated to the Apache Arrow•
project in 2019 is a very fast, extensible query engine for building high-quality
data-centric systems written in Rust and uses the Apache Arrow in-memory
format.

• ROAPI: ROAPI (read-only APIs) is a tool that builds on top of Apache Arrow•
and DataFusion, and is a no-code solution to automatically spin up read-only
APIs for Delta Lake and other sources.

• Rust: Rust is a statically typed, compiled language that offers performance akin•
to C and C++, but with a focus on safety and memory management. It’s known
for its unique ownership model that ensures memory safety without a garbage
collector, making it ideal for systems programming where control over system
resources is crucial.

In this book we’re using macOS. If you’re running Windows you
can use git bash, WSL, or any shell configured for bash commands.

Choose an Interface
We will discuss each of the following interfaces in detail and how to create and read
Delta Lake tables with these interfaces.

• Python•
• Jupyter Lab Notebook•
• PySpark Shell•
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• Scala Shell•
• Delta Rust API•
• ROAPI•

[Run Docker Container]
The bash entrypoint for all docker commands starts with the fol‐
lowing command.

• Open a bash shell•
• Run the container from the build image with a bash entrypoint•

using the following command

docker run --name delta_quickstart --rm -it --
entrypoint bash delta_quickstart

Delta Lake for Python
First, open a bash shell and run a container from the built image with a bash
entrypoint.

Next, launch a Python interactive shell session [python3] and the following code
snippet will create a Python Pandas DataFrame, create a Delta Lake table, generate
new data, write by appending new data to this table, and then finally read and then
show the data from this the Delta Lake table.

import pandas as pd
from deltalake.writer import write_deltalake
from deltalake import DeltaTable
 
df = pd.DataFrame(range(5))                # Create Pandas DataFrame
write_deltalake("/tmp/deltars_table", df)  # Write Delta Lake table
df = pd.DataFrame(range(6, 11))            # Generate new data 
write_deltalake("/tmp/deltars_table", \
        df, mode="append")                 # Append new data
dt = DeltaTable("/tmp/deltars_table")      # Read Delta Lake table
dt.to_pandas()                             # Show Delta Lake table

The output of the above code snippet should look similar to the following output:

## Output
    0
0   0
1   1
... ...
8   9
9  10
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With these Python commands you have created your first Delta Lake table. You can
validate this by reviewing the underlying file system that makes up this table. To do
this, you can list the contents within the folder of your Delta Lake table that you saved
in /tmp/deltars-table by running the following ls command after you close your
Python process.

$ ls -lsgA /tmp/deltars_table
total 12
4 -rw-r--r-- 1 NBuser 1610 Apr 13 05:48 0-...-f3c05c4277a2-0.parquet
4 -rw-r--r-- 1 NBuser 1612 Apr 13 05:48 1-...-674ccf40faae-0.parquet
4 drwxr-xr-x 2 NBuser 4096 Apr 13 05:48 _delta_log

The .parquet files are the files that contain the data you see in your Delta Lake table,
while the _delta_log contains Delta’s transaction log; we will discuss this more in a
later Chapter.

JupyterLab Notebook
Open a bash shell and run a container from the built image with a Jupyterlab
entrypoint.

docker run --name delta_quickstart --rm -it -p 8888-8889:8888-8889 delta_quick-
start

The command will output a JupyterLab notebook URL, copy that URL and launch a
browser to follow along the notebook and run each cell.

PySpark Shell
Open a bash shell and run a container from the built image with a bash entrypoint.

docker run --name delta_quickstart --rm -it --entrypoint bash delta_quickstart

Next, launch a PySpark interactive shell session.

$SPARK_HOME/bin/pyspark --packages io.delta:${DELTA_PACKAGE_VERSION} \
--conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" \
--conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.Del-
taCatalog"

Let’s run some basic commands in the shell.

# Create a Spark DataFrame
data = spark.range(0, 5)
# Write to a Delta Lake table
(data
   .write
   .format("delta")
   .save("/tmp/delta-table")
)
# Read from the Delta Lake table
df = (spark
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        .read
        .format("delta")
        .load("/tmp/delta-table")
        .orderBy("id")
      )
# Show the Delta Lake table
df.show()

To verify that you have a Delta Lake table, you can list the contents within the folder
of your Delta Lake table. For example, in the previous code, you saved the table
in /tmp/delta-table. Once you close your pyspark process, run a list command in
your Docker shell and you should get something similar to below.

$ ls -lsgA /tmp/delta-table
total 36
4 drwxr-xr-x 2 NBuser 4096 Apr 13 06:01 _delta_log
4 -rw-r--r-- 1 NBuser  478 Apr 13 06:01 part-00000-56a2c68a-f90e-4764-8bf7-
a29a21a04230-c000.snappy.parquet
4 -rw-r--r-- 1 NBuser   12 Apr 13 06:01 .part-00000-56a2c68a-f90e-4764-8bf7-
a29a21a04230-c000.snappy.parquet.crc
4 -rw-r--r-- 1 NBuser  478 Apr 13 06:01 part-00001-bcbb45ab-6317-4229-
a6e6-80889ee6b957-c000.snappy.parquet
4 -rw-r--r-- 1 NBuser   12 Apr 13 06:01 .part-00001-bcbb45ab-6317-4229-
a6e6-80889ee6b957-c000.snappy.parquet.crc
4 -rw-r--r-- 1 NBuser  478 Apr 13 06:01 part-00002-9e0efb76-
a0c9-45cf-90d6-0dba912b3c2f-c000.snappy.parquet
4 -rw-r--r-- 1 NBuser   12 Apr 13 06:01 .part-00002-9e0efb76-
a0c9-45cf-90d6-0dba912b3c2f-c000.snappy.parquet.crc
4 -rw-r--r-- 1 NBuser  486 Apr 13 06:01 part-00003-909fee02-574a-47ba-9a3b-
d531eec7f0d7-c000.snappy.parquet
4 -rw-r--r-- 1 NBuser   12 Apr 13 06:01 .part-00003-909fee02-574a-47ba-9a3b-
d531eec7f0d7-c000.snappy.parquet.crc

Scala Shell
Open a bash shell and run a container from the built image with a bash entrypoint.

docker run --name delta_quickstart --rm -it --entrypoint bash delta_quickstart

Launch a Scala interactive shell session.

$SPARK_HOME/bin/spark-shell --packages io.delta:${DELTA_PACKAGE_VERSION} \
--conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" \
--conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.Del-
taCatalog"

Next, run some basic commands in the shell.

// Create a Spark DataFrame
val data = spark.range(0, 5)
// Write to a Delta Lake table
(data
   .write
   .format("delta")
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   .save("/tmp/delta-table")
)
// Read from the Delta Lake table
val df = (spark
            .read
            .format("delta")
            .load("/tmp/delta-table")
            .orderBy("id")
         )
// Show the Delta Lake table
df.show()

For instructions to verify the Delta Lake table, please refer to the PySpark Shell
section.

Delta Rust API
Open a bash shell and run a container from the built image with a bash entrypoint.

docker run --name delta_quickstart --rm -it --entrypoint bash delta_quickstart

Next, execute examples/read_delta_table.rs to review the Delta Lake table meta‐
data and files of the covid19_nyt Delta Lake table. This command will list useful
output including the number of files written and their absolute paths, among other
information.

cd rs
cargo run --example read_delta_table

Finally, execute examples/read_delta_datafusion.rs to query the covid19_nyt
Delta Lake table using DataFusion

cargo run --example read_delta_datafusion

Running the above command should list the schema and 5 rows of the data from
covid19_nyt Delta Lake table.

ROAPI
The rich open ecosystem around Delta Lake enables many novel utilities; one such
utility is included in the quickstart container: ROAPI (read-only APIs). With ROAPI,
you can spin up read-only APIs for static Delta Lake data sets without requiring a
single line of code. You can query your Delta Lake table with Apache Arrow and
DataFusion using ROAPI which are also pre-installed in this docker.

Open a bash shell and run a container from the built image with a bash entrypoint.

docker run --name delta_quickstart --rm -it -p 8080:8080
--entrypoint bash delta_quickstart

Start the roapi API using the following nohup command. The API calls are pushed to
the nohup.out file.
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Please note if you haven’t created the deltars_table in your container, create it via
the deltalake for Python option above. Alternatively you may omit the following
from the command: --table 'deltars_table=/tmp/deltars_table/,format=del
ta' as well as any steps that call the deltars_table.

nohup roapi --addr-http 0.0.0.0:8080 --table 'deltars_table=/tmp/del-
tars_table/,format=delta' --table 'covid19_nyt=/opt/spark/work-dir/rs/data/
COVID-19_NYT,format=delta' &

Open another shell and connect to the same Docker image.

docker exec -it delta_quickstart /bin/bash

Run the below steps in the shell launched in the previous step.

Check the schema of the two Delta Lake tables

curl localhost:8080/api/schema

The output of the above command should be along the following lines

{
   "covid19_nyt":{"fields":[{"name":"date","data_type":"Utf8","nulla-
ble":true,"dict_id":0,"dict_is_ordered":false},
{"name":"county","data_type":"Utf8","nulla-
ble":true,"dict_id":0,"dict_is_ordered":false},
{"name":"state","data_type":"Utf8","nulla-
ble":true,"dict_id":0,"dict_is_ordered":false},
{"name":"fips","data_type":"Int32","nulla-
ble":true,"dict_id":0,"dict_is_ordered":false},
{"name":"cases","data_type":"Int32","nulla-
ble":true,"dict_id":0,"dict_is_ordered":false},
{"name":"deaths","data_type":"Int32","nulla-
ble":true,"dict_id":0,"dict_is_ordered":false}]},
   "deltars_table":{"fields":[{"name":"0","data_type":"Int64","nulla-
ble":true,"dict_id":0,"dict_is_ordered":false}]}
}

Query the deltars_table.

curl -X POST -d "SELECT * FROM deltars_table"  localhost:8080/api/sql

The output of the above command should be along the following lines.

[{"0":0},{"0":1},{"0":2},{"0":3},{"0":4},{"0":6},{"0":7},{"0":8},{"0":9},
{"0":10}]

Query the covid19_nyt Delta Lake table.
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curl -X POST -d "SELECT cases, county, date FROM covid19_nyt ORDER BY cases 
DESC LIMIT 5" localhost:8080/api/sql

The output of the above command should be along the following lines.

[
    {"cases":1208672,"county":"Los Angeles","date":"2021-03-11"},
    {"cases":1207361,"county":"Los Angeles","date":"2021-03-10"},
    {"cases":1205924,"county":"Los Angeles","date":"2021-03-09"},
    {"cases":1204665,"county":"Los Angeles","date":"2021-03-08"},
    {"cases":1203799,"county":"Los Angeles","date":"2021-03-07"}
]

Native Delta Lake Libraries
The Delta Lake implementation in Rust was originally developed by Scribd to build
faster and cheaper streaming data ingestion pipelines. Scribd adopted Delta Lake
because of its open protocol and ecosystem, but found that Apache Spark was too
heavy-weight for simple streaming data ingestion from Apache Kafka. Workloads
that required zero transformation or aggregation were well suited to implementation
in Rust. The initial versions of the library were developed in the open, in tandem
with the kafka-delta-ingest application primarily by QP Hou, Christian Williams, and
Mykhailo Osypov. The choice of Rust was a precinct one, as it allowed the project
to grow dramatically after the introduction of Python bindings which exposed the
Delta Lake implementation to the Python ecosystem with minimal changes. Since its
creation in the Spring of 2020, the delta-rs project has had almost a hundred different
contributors from almost every continent, and helped bring Delta Lake into countless
projects big and small.

Various bindings available
The Rust library provides a strong foundation for other non-JVM based libraries to
build with Delta Lake. The most popular and prominent of those bindings are the
Python bindings which expose a DeltaTable class and optionally integrate seamlessly
with Pandas or PyArrow. At the time of this writing the “deltalake” Python package
has been built and tested on Python versions 3.7 and later, and offers many pre-built
“wheels” for easy installation on most major operating systems and architectures.

Multiple community bindings have been developed on top of the Rust library, expos‐
ing Delta Lake to Ruby, Node, or other C-based connectors. None have yet reached
the maturity presently seen in the Python package, partly because none of the other
language ecosystems have seen the level of investment in data tooling like the Python
community. Pandas, Polars, PyArrow, Dask, and more provide a very rich set of tools
for developers to read from and write to Delta tables.

More recently there has been experimental work in a so-called “Delta Kernel”, which
aims to provide a native Delta library interface for connectors that abstracts away
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the Delta protocol into one place. This work is still early but is expected to help
consolidate support for native (e.g. C/C++) and higher level engines (e.g. Python,
Node) so that everybody can benefit from the more advanced features, such as
Deletion Vectors, by simply upgrading their underlying Delta Kernel versions.

Installation
Delta Lake provides native Python bindings based on delta-rs project with Pandas
integration. This Python package could be easily installed with the command:

pip install deltalake

After installation, you can follow the exact same steps as in the Delta Lake for Python
section and execute the code snippet from that section.

Apache Spark with Delta Lake
Apache Spark is a robust, open-source engine designed for the processing and anal‐
ysis of large-scale data sets. It’s architected to be both rapid and versatile, capable
of managing a variety of analytics, both batch and real-time. Spark provides an
interface for programming comprehensive clusters, offering implicit data parallelism
and fault tolerance. It leverages in-memory computations to enhance speed and data
processing over MapReduce operations.

One of Spark’s distinguishing features is its multi-language support, broadening its
accessibility to a diverse range of users. It allows developers to construct applica‐
tions in several languages including Java, Scala, Python, R, and SQL. Furthermore,
Spark incorporates numerous libraries that enable a wide array of data analysis
tasks, encompassing machine learning, stream processing, and graph analytics. These
attributes position Apache Spark as a preferred solution for the efficient processing of
voluminous data at high velocity.

Spark is predominantly written in Scala, but its APIs are available in Scala, Python,
Java, and R. Spark SQL also allows users to write and execute SQL, or HiveQL
queries. For new users, we recommend exploring the Python API or SQL queries to
get started with Apache Spark. Based on data published by Databricks, both SQL and
Python use has grown dramatically over the past few years as they provide a high
performance starting point for many different workloads.

For a more detailed introduction to Spark, please check Learning Spark or Spark: The
Definitive Guide.

Setting up Delta Lake with Apache Spark
Please follow these instructions to set up Delta Lake with Apache Spark. Steps in this
section could be executed on your local machine in either of the following two ways:
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Interactive execution
Start the Spark shell (for Scala language, with spark-shell or for Python, with
pyspark) with Delta Lake and run the code snippets interactively in the shell.

Run as a project
Instead of code snippets, if you have code in multiple files, you can setup a
Maven or SBT project (Scala or Java) with Delta Lake, with all the source files,
and run the project. You could also use the examples provided in the Github
repository.

For all of the following instructions, make sure to install the correct
version of Spark or PySpark that is compatible with Delta Lake
2.3.0. See the release compatibility matrix for details.

Prerequisite: set up Java
As mentioned in the official Apache Spark installation instructions here, make sure
you have a valid Java version installed (8, 11, or 17) and that Java is configured
correctly on your system using either the system PATH or JAVA_HOME environmental
variable.

Windows users should follow the instructions in this blog, making sure to use the
correct version of Apache SparkTM that is compatible with Delta Lake 2.3.0 and above.

Set up an interactive shell
To use Delta Lake interactively within the Spark SQL, Scala, or Python shell, you need
a local installation of Apache Spark. Depending on whether you want to use SQL,
Python, or Scala, you can set up either the SQL, PySpark, or Spark shell, respectively.

Spark SQL Shell
The Spark SQL Shell, also referred to as the Spark SQL Command Line Interface
(CLI), is an interactive command-line tool designed to facilitate the execution of SQL
queries directly from the command line.

Download the compatible version of Apache Spark by following instructions from
Downloading Spark, either using pip or by downloading and extracting the archive
and running spark-sql in the extracted directory.

bin/spark-sql --packages io.delta:delta-core_2.12:2.3.0 --conf 
\ "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" --conf 
\ "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCata-
log"
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In the Spark SQL shell prompt, please copy and paste the following:

CREATE TABLE delta.`/tmp/delta-table` USING DELTA AS SELECT col1 as id FROM 
VALUES 0,1,2,3,4;

The SQL query concludes the creation of your first Delta Lake table using Spark SQL.

The data written to the above table, could be simply read back with another simple
SQL query as below:

SELECT * FROM delta.`/tmp/delta-table`;

PySpark Shell
The PySpark Shell, also known as the PySpark Command Line Interface, is an
interactive environment that facilitates engagement with Spark’s API using Python
programming language. It serves as a platform for learning, testing PySpark exam‐
ples, and conducting data analysis directly from the command line. The PySpark shell
operates as a REPL (Read Eval Print Loop), providing a convenient environment for
swiftly testing PySpark statements.

Install the PySpark version that is compatible with the Delta Lake version by running
the following on the command prompt:

pip install pyspark==<compatible-spark-version>

Run PySpark with the Delta Lake package and additional configurations:

pyspark --packages io.delta:delta-core_2.12:2.3.0 --conf "spark.sql.exten-
sions=io.delta.sql.DeltaSparkSessionExtension" --conf "spark.sql.cata-
log.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog"

In the PySpark shell prompt, copy paste the following:

data = spark.range(0, 5)
data.write.format("delta").save("/tmp/delta-table")

The code snippet concludes the creation of your first Delta Lake table using PySpark.

The data written to the above table, could be simply read back with a simple Pyspark
code snippet as below:

df = spark.read.format("delta").load("/tmp/delta-table")
df.show()

Spark Scala Shell
The Spark Scala Shell, also referred to as the Spark Scala Command Line Interface
(CLI), is an interactive platform that allows users to interact with Spark’s API utilizing
the Scala programming language. It is a potent tool for data analysis and serves as an
accessible medium for learning the API.
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Download the compatible version of Apache Spark by following instructions from
Downloading Spark, either using pip or by downloading and extracting the archive
and running spark-shell in the extracted directory.

bin/spark-shell --packages io.delta:delta-core_2.12:2.3.0 --
conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" 
--conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.Del-
taCatalog"

In the Scala shell prompt, please copy paste the following:

val data = spark.range(0, 5)
data.write.format("delta").save("/tmp/delta-table")

This code snippet concludes the creation of your first Delta Lake table using Scala
shell. The data written to the table can be read back with a simple PySpark code
snippet as below:

val df = spark.read.format("delta").load("/tmp/delta-table")
df.show()

PySpark Declarative API
A PyPi package containing the Python APIs for using Delta Lake with Apache Spark
is available too. This could be very useful for setting up a Python project and also
more importantly for unit testing. Delta Lake can be installed using the following
command:

pip install delta-spark

And SparkSession can be configured with the configure_spark_with_delta_pip()
utility function in Delta Lake:

from delta import *
builder = (
  pyspark.sql.SparkSession.builder.appName("MyApp").config(
    "spark.sql.extensions",
    "io.delta.sql.DeltaSparkSessionExtension"
  ).config(
    "spark.sql.catalog.spark_catalog",
    "org.apache.spark.sql.delta.catalog.DeltaCatalog"
  )
)

Databricks Community Edition
Databricks provides a platform for personal use with Databricks Community Edition,
which gives us a cluster of 15 GB memory which might be just enough to learn Delta
Lake with the help of Notebooks and bundled Spark version.
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Start by signing up for Databricks Community Edition by going to databricks.com/
try.

Fill in your details on the form and click on Continue. Choose Community Edition
by clicking on the link: “Get started with Community Edition” on the second page of
the registration form.

After successfully creating your account, you will receive an email to verify your
email address. Please complete the verification. Once you login to the Databricks
Community Edition, you will view the Databricks workspace similar to Figure 1-1.

Figure 1-1. Databricks Community Edition landing page after logging in successfully

Create a Cluster with Databricks Runtime
Start by clicking on the Compute menu item on the left pane. All the clusters you
create will be listed on this page. However, this is the first time you are logging into
this account, so this page doesn’t list any clusters yet as in Figure 1-2.
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Figure 1-2. Databricks Community Edition Clusters page

On the next page, clicking on Create Compute will bring you to a New Cluster page.
The Databricks Runtime 13.3 LTS is selected by default (at the time of writing). You
can choose any of the latest (preferably LTS) Databricks Runtimes for running the
code.

In this case, 13.3 Databricks Runtime has been chosen (Figure 1-3). For more info
on Databricks Runtime releases and the compatibility matrix, please check the Data‐
bricks website. The cluster name chosen is “Delta_Lake_DLDG”. Please choose any
name you’d like and hit the Create Cluster button at the top to launch the cluster.
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Figure 1-3. Selecting a Databricks Runtime for the Cluster in Databricks Community
Edition

Within Databricks Community Edition, we can only create one
cluster at a time. If one already exists, you will need to either use it
or delete it to create a new one.

Your cluster should be up and running within a few minutes as shown in Figure 1-4.
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Figure 1-4. Cluster up and running

Databricks bundles Delta Lake in the Databricks Runtime, so there
is no need to install Delta Lake explicitly either through pip or
using Maven coordinates of the package to the cluster.

Importing notebooks
For brevity and ease of understanding, we will (re)use the Jupyter notebook we saw
in the previous section on JupyterLab notebook. This notebook is available in the
delta-docs GitHub repository here. Please copy the notebook link and keep it handy
as we will be importing this notebook in this step.

Go to Databricks Community Edition and click on Workspace then Users and then
on the downward arrow beside your email as shown in Figure 1-5.
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Figure 1-5. Importing a notebook in Databricks Community Edition

In the dialog box, click on the URL radio button, paste the notebook URL, and click
Import. This will render the Jupyter Notebook in Databricks Community Edition.

Attaching Notebooks
Now select the Cluster you created earlier to run this notebook. In this case, it is
“Delta_Lake_Rocks” as shown in Figure 1-6.
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Figure 1-6. Choose the cluster you want to attach the notebook

Now you can run each cell in the notebook and press Control + Enter on your
keyboard to execute the cell. When a Spark Job is running, Databricks shows finer
details directly in the notebook. You can also navigate to the Spark UI from here.

You will be able to write to and read from the Delta Lake table within this notebook.

Summary
In this chapter, we covered the various approaches you can take to get started with
Delta Lake: Delta Docker, Delta Lake for Python, Apache SparkTM with Delta Lake,
PySpark Declarative API and finally Databricks Community Edition. This would
familiarize you with how a simple notebook or a command shell can be run easily to
write to and read from Delta Lake tables.

Finally, through a very short example, we showed you how you can use any of the
above approaches, how easy it is to install Delta Lake or how many different ways
is Delta Lake available. We saw we could use SQL, Python, Scala, Java and Rust
programming languages through the API for accessing the Delta Lake tables — which
brings us to the next chapter: Using Delta Lake, where we examine various APIs in
more detail on reading, writing and many other commands available.
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CHAPTER 2

Diving into the Delta Lake Ecosystem

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the fifth chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Over the last few chapters, we’ve explored Delta Lake from the comfort of the Spark
ecosystem. The Delta protocol, however, offers rich interoperability across not only
the underlying table format but within the computing environment as well. This
opens the doors to an expansive universe of possibilities for powering our lakehouse
applications - using a single source of table truth. It’s time to break outside the box
and look at the connector ecosystem.

The connector ecosystem is a set of ever-expanding frameworks, services, and
community-driven integrations enabling Delta to be utilized from just about any‐
where. The commitment to interoperability enables us to take full advantage of the
hard work and effort the growing open-source community provides without sacrific‐
ing the years we’ve collectively poured into technologies outside the Spark ecosystem.

In this chapter, we’ll learn to use some of the more popular Delta connectors while
uncovering the unifying connective tissue that lies just beneath the tip of the Delta
iceberg. For those of us who haven’t done much work with Apache Spark, you’re in
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luck since this chapter is a love song to Delta Lake without Apache Spark and a closer
look at how the connector ecosystem works.

We will be covering the following connectors, libraries, and utilities:

• Flink DataStream Connector•
• Delta Kafka Ingest•
• Trino Connector•
• The Delta Rust API•

What are connectors, you ask? We will learn all about them next.

Connectors
As people, we don’t like to set limits for ourselves. Some of us are more adventurous
and love to think about the unlimited possibilities of the future. Others of us take a
more straight and narrow approach to life. Regardless of our attitudes, the one thing
that binds us all together is our pursuit of adventure, search for novelty, and desire
to make decisions for ourselves. Nothing is worse than being locked in, trapped,
with no way out. While Delta Lake is not a person, the open-source community has
responded to the various wants and needs of the community. A healthy ecosystem
has risen up to ensure that no one will have to be tied directly to the Apache
Spark ecosystem, the JVM, or even the traditional set of data focused programming
languages like Python, Scala, and Java.

The mission of the connector ecosystem is to ensure frictionless interoperability with
the Delta protocol, which provides the capabilities blueprint and invariants for each
new Delta Lake feature and ensures all integrations can quickly implement and
support new and emerging features. Over time, however, fragmentation across the
current (delta < 3.0) connector ecosystem has led to many independent implementa‐
tions of the Delta protocol and divergence across the current connectors. To continue
to support cutting-edge features planned for Delta Lake and to push the boundaries
of interoperability, something had to change. This mindset led to the Delta Kernel,
which we will explore in depth in Chapters 7 and 8.

The Kernel provides a seamless set of read-level APIs that ensures
correctness of operation and freedom of expression for the connec‐
tor API implementation, which will be followed up with a standard
write-level API. This means that the behavior across all connectors
will leverage the same set of operations, with the same inputs and
outputs, while ensuring each connector can quickly implement
new features without lengthy lead times.
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There are a healthy number of connectors and integrations that enable interoperabil‐
ity with the Delta table format and protocols, no matter where we are triggering
operations from. Interoperability and unification are part of the core tenets of the
Delta project and helped drive the push towards UniForm which is a feature of Delta
3.0 and provides cross-table support for Delta, Iceberg, and Hudi.

In the sections that follow we’ll take a look at the most popular connectors including
Apache Flink, Trino, Kafka Delta Ingest, and we’ll conclude with the Delta Rust API.
Learning to utilize Delta from your favorite framework is just a few steps away.

Apache Flink
Apache Flink is “a framework and distributed processing engine for stateful computa‐
tions over unbounded and bounded data streams that are designed to run in all common
cluster environments, perform computations at in-memory speed and at any scale”. In
other words, Flink can scale massively, and continue to perform efficiently while
handling every increasing load in a distributed way while adhering to exactly-once
semantics (if specified in the CheckpointingMode) for data processing even in the
case of failures, or disruptions to the runtime of an application.

If you haven’t worked with Flink before, there is an
excellent book called Stream Processing with Apache
Flink (https://www.oreilly.com/library/view/stream-processing-with/
9781491974285/) by Fabian Hueske and Vasiliki Kalavri that will
get you up to speed in no time.

We will assume going forward that we either understand enough about Flink to
compile an application or are willing to follow along and learn as we go. With that
said, let’s look at how to add the delta-flink connector to our Flink applications.

Flink DataStream Connector
The Flink/Delta connector is built on top of the Delta Standalone library and pro‐
vides a seamless abstraction for reading and writing Delta tables using Flink primi‐
tives like the DataStream and Table APIs. In fact, because Delta Lake uses Parquet as
its common data format, there are really no special considerations for working with
Delta tables aside from the capabilities introduced by the Delta Standalone library.

The standalone library provides the essential APIs for reading the metadata provided
by the DeltaLog to read the full current version of a given table, or to begin reading
from a specific version, or to find the approximate version of the table based on a
provided iso-8601 timestamp. We will cover the basic capabilities of the standalone
library as we learn to use DeltaSource and DeltaSink in the following sections.
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The full Java application referenced in the following sections
is located in the book’s git repository under /ch05/applica
tions/flink/dldg-flink-delta-app.
As a follow-up for the curious reader, unit tests for the application
provide a glimpse at how to use the Delta standalone APIs.

Installing the Connector
Everything starts with the connector. Given we compile Flink applications, it is
easy to add the delta-flink connector using Maven, Gradle, or Sbt. The following
example shows how to include the delta-flink connector dependency in a Maven
project.

<dependency>
  <groupId>io.delta</groupId>
  <artifactId>delta-flink</artifactId>
  <version>${delta-connectors-version}</version>
</dependency>

The value of the delta-connectors-version property will change
as new versions are released. At the time of writing, the version
jumped from 0.6.0 to 3.0.0rc1 in order to account for the change
to the location of the source code. For the Delta 3.0 release, all con‐
nectors are now officially included in the main Delta repository.

It is worth noting that Apache Flink is officially dropping support
for the Scala programming language. The content for this chapter
is written using Flink 1.17.1 which officially no longer has pub‐
lished Scala APIs. While you can still use Scala with Flink, moving
towards the Flink 2.0 release, Java and Python will be the only
supported variants. All of the examples, and the application code in
the book’s GitHub, are therefore written in Java.

The connector ships with classes for reading and writing to Delta Lake. Reading is
handled by the DeltaSource API and writing is handled by the DeltaSink API. We’ll
start with the DeltaSource API, move on to the DeltaSink API, and then look at an
end-to-end application.

DeltaSource API
The DeltaSource API provides static builders to easily construct sources for bounded
or continuous data flows. The big difference between the two variants of the source
is related to the finite (batch) or infinite (streaming) operations on the source Delta
table. While the behavior between these two processing modes differs, the configura‐
tion parameters only differ slightly. We’ll begin by looking at the bounded source
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and conclude with the continuous source, as there are more configuration options to
cover there.

Bounded Mode

In order to create the DeltaSource object, we’ll be using the static forBoundedRowData
method from the DeltaSource class. This builder takesthe path to the Delta table and
an instance of the application’s hadoop configuration, as shown in Example 2-1.

Example 2-1. Creating the DeltaSource Bounded Builder

% Path sourceTable = new Path("s3://bucket/delta/table_name")
  Configuration hadoopConf = new Configuration()
  var builder = DeltaSource.forBoundedRowData(
    sourceTable,
    hadoopConf);

The builder object returned above is an instance of the RowDataBoundedDeltaSource
Builder and this is where we specify how we’d like to read from the Delta table.

Builder Options.    The following options can be applied directly to the builder.

columnNames (string …)
This option provides us with the ability to specify the column names on a table
we’d like to read, while ignoring the rest. This functionality is especially useful
on wide tables with many columns, and can help alleviate memory pressure for
unused columns.

% builder.columnNames("event_time", "event_type", "brand", "price");
  builder.columnNames(
    Arrays.asList("event_time", "event_type", "brand", "price"));

startingVersion (long)
This option provides us with the ability to specify the exact version from the
Delta table’s transaction history to begin reading from in the form of a numeric
long. This option is mutually exclusive with the startingTimestamp option, as
both provide a means of supplying a cursor (or transactional starting point) on
the Delta table.

% builder.startingVersion(100L);

startingTimestamp (string)
This option provides the ability to specify an approximate timestamp to begin
reading from in the form of an ISO-8601 string. This option will trigger a scan
of the Delta transaction history looking for a matching version of the table that
was generated at or after the given timestamp. In the case where the entire table is
newer than the timestamp provided, the table will be fully read.
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% builder.startingTimestamp("2023-09-10T09:55:00.001Z");

The timestamp string can represent time with as little precision as a simple date
like "2023-09-10" or with millisecond precision like the example above. In either
case, the operation will result in the Delta table being read from a specific point
in table time.

parquetBatchSize (int)
Takes an integer controlling how many rows to return per internal batch, or
generated split within the Flink engine.

% builder.option("parquetBatchSize", 5000);

Generating the Bounded Source.    Once we finish supplying the options to the builder,
we generate the DeltaSource instance by calling build.

% final DeltaSource<RowData> source = builder.build();

With the bounded source built, we can now read batches of our Delta Lake records
off of our tables, but what if we wanted to continuously process new records as they
arrived? In that case, we can just use the continuous mode builder!

Continuous Mode

In order to create this variation of the DeltaSource object, we’ll use the static forCon
tinuousRowData method on the DeltaSource class. The is shown in Example 2-2,
and like the forBoundedRowData builder, we can provide the same base parameters
which makes switching from batch to streaming super simple.

Example 2-2. Creating the DeltaSource Continuous Builder

% var builder = DeltaSource.forContinuousRowData(
    sourceTable,
    hadoopConf);

The object returned above is an instance of the RowDataContinuousDeltaSource
Builder and just like the bounded variant enables us to provide options for control‐
ling the initial read position within the Delta table based on the startingVersion or
startingTimestamp, as well as some additional options that control the frequency in
which Flink will check the table for new entries.

Builder Options.    The following options can be applied directly to the continuous
builder, additionally, all of the options of the bounded builder apply to the continuous
builder: columnNames, startingVersion, and startingTimestamp.
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updateCheckIntervalMillis (long)
This option takes a numeric long value representing the frequency to check for
updates to the Delta table, with a default value of 5000 milliseconds.

% builder.updateCheckIntervalMillis(60000L);

If we know the table we are streaming from is only updated periodically, then
we can essentially reduce unnecessary IO. For example, if we know new data will
only ever be written on a one-minute cadence, then we can take a breather and
set the frequency to check every minute. This can always be modified if there is a
need to process faster, or slower based on the behavior of the Delta table.

ignoreDeletes (boolean)
Setting this optional allows us to optionally ignore deleted rows. It is possible that
your streaming application will never need to know that data from the past has
been removed. If we are processing data in real-time, considering the feed of data
from our tables as append-only, then we are focused on the head of the table, and
can safely ignore the tail changes as data ages out.

ignoreChanges (boolean)
Setting this optional allows us to ignore changes to the table that occur upstream,
including deleted rows, and other modifications to physical table data or logical
table metadata. Unless the table is overwritten with a new schema, then we can
continue to process ignoring modifications to the table structure.

Generating the Continuous Source.    Once we finish supplying the options to the builder,
we generate the DeltaSource instance by calling build.

% final DeltaSource<RowData> source = builder.build();

We’ve looked at how to build the DeltaSource object, and seen the connector configu‐
ration options, but what about table schema or partition column discovery? Luckily,
there is no need to go into too much detail since both are automatically discovered
using the table metadata.

Table schema discovery
The Flink Delta source connector uses the Delta table log to discover columns and
their types. If we do not specify any columns in our source definition, all columns
from the underlying Delta table will be read. If we however specify a collection
of column names, using the Delta source builder method, then only that subset of
columns will be read from the underlying Delta table. In both cases, the Source
connector will discover the Delta types for every column and will convert them to the
corresponding Flink types.
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Partition column discovery
Flink Delta source connector will also use the Delta table log to determine which
columns are partition columns. No additional actions are necessary.

Using the DeltaSource
After building the DeltaSource object (bounded or continuous), we can now add
the source into the streaming graph of our DataStream using an instance of the
StreamingExecutionEnvironment.

Example 2-3 creates a simple execution environment instance and adds the source of
our stream (DeltaSource) using fromSource.

Example 2-3. Creating the StreamExecutionEnvironment for our DeltaSource

% final StreamExecutionEnvironment env =
    StreamExecutionEnvironment.getExecutionEnvironment();
  env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
  env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);
  
  DeltaSource<RowData> source = ...
  env.fromSource(source, WatermarkStrategy.noWatermarks(), "delta table source")

We now have a live data source for our Flink job supporting Delta. We can choose
to add additional sources, join and transform our data, and even write the results of
our transforms back to Delta using the DeltaSink, or anywhere else our application
requires us to go. Next, we’ll look at using the DeltaSink and then connect the dots
with a full end-to-end example.

DeltaSink API
The DeltaSink API provides a static builder to construct a Sink to Delta Lake easily.
Just like the DeltaSource API,

Example 2-4. Creating the DeltaSink Builder

% Path deltaTable = new Path("s3://bucket/delta/table_name")
  Configuration hadoopConf = new Configuration()
  RowType rowType = …
  
  RowDataDeltaSinkBuilder sinkBuilder = DeltaSink.forRowData(
    sourceTable,
    hadoopConf,
    rowType);
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The builder pattern for the delta-flink connector should already feel familiar at this
point. The only difference between crafting this builder is the addition of the RowType
reference.

RowType
Similar to the StructType from Spark, the RowType stores the logical type informa‐
tion for the fields within a given logical Row. At a higher level, we can think about this
in terms of a simple DataFrame. It is an abstraction that makes working with dynamic
data simpler.

More practically, if we have a reference to the source, or transformation, that occur‐
red prior to the DeltaSink in our DataStream, then we can dynamically provide
the RowType using a simple trick. Through some casting tricks, we can apply a
conversions between TypeInformation<T> and RowData<T>, as seen in Example 2-4,
and then we’ll focus on how to practically extract the RowType from our upstream
DeltaSource in Example 2-5.

Example 2-5. Extracting the RowType via TypeInformation

% public RowType getRowType(TypeInformation<RowData> typeInfo) {
    InternalTypeInfo<RowData> sourceType = (InternalTypeInfo<RowData>) typeInfo;
    return (RowType) sourceType.toLogicalType();
  }

The getRowType method converts the provided typeInfo object into InternalTy
peInfo and uses toLogicalType which can be cast back to a RowType. We’ll see how
to use this method next in Example 2-6 to gain an understanding of the power of
Flink’s RowData.

Example 2-6. Extracting the RowType from our DeltaSource

% DeltaSource<RowData> source = …
  TypeInformation<RowData> typeInfo = source.getProducedType();
  RowType rowTypeForSink = getRowType(typeInfo);

If we have a simple streaming application, chances are we’ve managed to get along
nicely for a while not spending a lot of time manually crafting POJOs, and working
with serializers and deserializers, or maybe we’ve decided to use alternative mecha‐
nisms for creating our data objects, like Avro or Google Protocol Buffers. It’s also
possible that we’ve never had to work with data outside of traditional database tables.
No matter what the use case, working with columnar data means we have the luxury
of simply reading what we want. Take the following sql statement:

% select name, age, country from users; 

We could optionally have just taken all columns via select *, but more often than
not our applications won’t need everything (all columns) just because it’s there. With
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the ability to dynamically read and select specific columns (known as sql projection)
from a Delta Lake table, this means we can lean on the table’s schema, which may
change over time, without needed to maintain a separate POJO, or some other
reference, which speeds up our ability to create flexible data processing applications.

Builder Options
The following options can be applied directly to the builder.

withPartitionColumns (String …)
This builder option takes an array of strings that represent the subset of columns.
The columns must exist physically in the stream, or be generated with existing
values.

withMergeSchema (boolean)
This builder option must be set to true in order to opt into automatic schema
evolution.

In addition to the builder options, it is worth covering the semantics of exactly-once
writes using the delta-flink connector.

Exactly-Once Guarantees

The DeltaSink does not immediately write to the Delta table. Rather, rows are
appended to flink.streaming.sink.filesystem.DeltaPendingFile, not to be confused
with Delta Lake as these provide a mechanism to buffer writes (deltas) to the file
system. The pending files remain open for writing until the checkpoint interval is
met, and the pending files are rolled over, which is the point where the buffered
records will be committed to the DeltaLog. We specify the write frequency to Delta
Lake using the interval supplied when we enable checkpointing on our data stream.

Example 2-7. Setting the Checkpoint Interval and Mode

% StreamExecutionEnvironment
  .getExecutionEnvironment()
  .enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);

Using the checkpoint config above, we’d create a new transaction, at-most, every 2
seconds, at which point the DeltaSink would use our Flink application appId and the
checkpointId associated with the pending files. This is similar to the use of txnAppId
and txnVersion for idempotent writes, and will likely be unified in the future.
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End-to-End Example
We’ll look at an end-to-end example that uses the Flink DataStream api to read
from Kafka and write into Delta Lake. The application source code and docker
environment are provided in the book’s repo under ch05, including steps to initalize
the ecomm.v1.clickstream Kafka topic, write (produce) records to be consumed by
the Flink application, and written into Delta.

Figure 2-1. Kafka Source writing to our Delta Sink

Let’s define our DataStream using the KafkaSource connector and the DeltaSink from
earlier in this section within the scope of Example 2-8.

Example 2-8. Kafka to DeltaSink DataStream

% public DataStreamSink<RowData> createDataStream(
    StreamExecutionEnvironment env) throws IOException {
    
    final KafkaSource<Ecommerce> source = this.getKafkaSource();
    final DeltaSink<RowData> sink =
       this.getDeltaSink(Ecommerce.ECOMMERCE_ROW_TYPE);
 
    final DataStreamSource<Ecommerce> stream = env
       .fromSource(source, WatermarkStrategy.noWatermarks(), "kafka-source");
 
    return stream
           .map((MapFunction<Ecommerce, RowData>) Ecommerce::convertToRowData)
           .setParallelism(1)
           .sinkTo(sink)
           .name("delta-sink")
           .setDescription("writes to Delta Lake")
           .setParallelism(1);
  }
 

The example takes binary data from Kafka representing ecommerce transactions in
JSON format. Behind the scenes, we deserialize the json data into Ecommerce rows,
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and then transform from the JVM object into the internal RowData representation
required for writing to our Delta table. Then we simply use an instance of the
DeltaSink in order to provide a terminal point for our data stream.

Next, we simply call execute after adding some additional descriptive metadata to the
resulting DataStreamSink, as we’ll see in Example 2-9.

Example 2-9. Running the End-To-End Example

% public void run() throws Exception {
    StreamExecutionEnvironment env = this.getExecutionEnvironment();
    DataStreamSink<RowData> sink = createDataStream(env);
    sink
      .name("delta-sink")
      .setParallelism(NUM_SINKS)
      .setDescription("writes to Delta Lake");
        
    env.execute("kafka-to-delta-sink-job");
  }

While we just scratched the surface on how to use the Flink connector for Delta Lake
and there is a lot more to explore outside of the Flink ecosystem.

To deep dive and explore more use cases, or experiment locally, just
follow the step-by-step overview under the ch05/README.md, or
dip into ch05/applications/flink.

In a similar vein as our end-to-end example with Flink, we are going to explore
ingesting the same eCommerce data from Kafka but we’ll be using the Rust-based
Kafka-Delta-Ingest library.

Kafka Delta Ingest
This connector library provides a daemon that simplifies the common step of ingest‐
ing Kafka data into Delta Lake tables. Getting started can also be done in four easy
steps:

Install Rust
This can be done using the rustup toolchain.

% curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

38 | Chapter 2: Diving into the Delta Lake Ecosystem

https://github.com/delta-io/kafka-delta-ingest


Clone the Project Source
% git clone git@github.com:delta-io/kafka-delta-ingest.git \
  && cd kafka-delta-ingest

Setup your Local Environment
From the git source, run the docker setup utility.

% docker compose up setup

Build the Project

Rust uses cargo for dependency management and to build your project. You will have
the cargo utility installed with the rustup toolchain. From the project root, run the
following command.

% cargo build

At this point you will have the local project built, rust dependencies installed, and you
can choose to either run the examples, or connect to your own kafka brokers and get
started.

// note: modifying the examples to run the ecommerce dataset. 
// this will show the command from ch05/rust/kafka-delta-ingest/
// reading, inserting, and then reading from a simple docker exec -it delta ...

Trino
Trino is a distributed SQL query engine designed to seamlessly connect to and
interoperate with a myriad of data sources. It provides a connector ecosystem which
supports Delta Lake natively.

Getting Started
All we need to get started with Trino and Delta Lake is any version of Trino newer
than version 373. At the time of writing, Trino is currently at version 427, but if we
happened to require the Delta Lake connector for versions lower than 373, then it can
be manually install as a plugin.

Connector Requirements
While the Delta connector is natively included in the Trino distribution, there are still
additional things we need to consider to ensure a frictionless experience:

Connecting to Databricks Delta Lake:
• Tables written by Databricks Runtime 7.3 LTS, 9.1 LTS, 10.4 LTS, 11.3 LTS, and•

12.2 LTS are supported.
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• Deployments using AWS, HDFS, Azure Storage, and Google Cloud Storage•
(GCS) are fully supported.

• Network access from the coordinator and workers to the Delta Lake storage.•
• Access to the Hive metastore service (HMS) of Delta Lake or a separate HMS.•
• Network access to the HMS from the coordinator and workers. Port 9083 is the•

default port for the Thrift protocol used by the HMS.

Working Locally with Docker:
• Trino Image•
• Hive Metastore Service (HMS) (standalone)•
• Postgres or supported RDBMS to store the HMS table properties, columns,•

databases, and other configurations (can point to managed RDBMS like RDS for
simplicity)

• Amazon S3, or MinIO (for object storage for our managed data warehouse)•

The docker compose configuration, in Example 2-10, shows how to configure a
simple Trino container for local testing.

Example 2-10. Basic Trino Docker Compose

services:
  trinodb:
    image: trinodb/trino:426-arm64
    platform: linux/arm64
    hostname: trinodb
    container_name: trinodb
    volumes:
      - $PWD/etc/catalog/delta.properties:/etc/trino/catalog/delta.properties
      - $PWD/conf:/etc/hadoop/conf/
    ports:
      - target: 8080
        published: 9090
        protocol: tcp
        mode: host
    environment:
      - AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID
      - AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY
      - AWS_DEFAULT_REGION=${AWS_DEFAULT_REGION:-us-west-1}
    networks:
      - dldg

The following section assumes we have the following resources available to us:

• Amazon S3 or MinIO: (bucket provisioned, with a user, and roles setup to allow•
read, write, and delete access). Using local MinIO to mock S3 is a simple way to
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try things out without any upfront costs. See the docker-compose in the books
github under chapter 5.

• MySQL or PostgreSQL: This can run locally, or we can set it up on our favorite•
cloud provider, for example, AWS RDS is a simple way to get started.

• Hive Metastore (HMS) or Amazon Glue Data Catalog•

Next, we’ll learn how to configure the Delta Lake connector so that we can create
a Delta catalog in Trino. If you want to learn more about using the Hive Metastore
(HMS), including how to configure the hive-site.xml, include the required jars for s3,
and how to run HMS, you can read through the sidebar text. Otherwise, skip ahead
to configuring and using the Trino connector.

Running the Hive Metastore
In order to run the metastore, we need to create a hive-site.xml. The following is all
that is required to connect to both MySQL and Amazon S3.

Example 2-11. hive-site.xml for HMS

<configuration>
  <property>
    <name>hive.metastore.version</name>
    <value>3.1.0</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://RDBMS_REMOTE_HOSTNAME:3306/metastore</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.cj.jdbc.Driver</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>RDBMS_USERNAME</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>RDBMS_PASSWORD</value>
  </property>
  <property>
    <name>hive.metastore.warehouse.dir</name>
    <value>s3a://dldgv2/delta/</value>
  </property>
   <property>
      <name>fs.s3a.access.key</name>
      <value>S3_ACCESS_KEY</value>
   </property>
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   <property>
      <name>fs.s3a.secret.key</name>
      <value>S3_SECRET_KEY</value>
   </property>
  <property>
    <name>fs.s3.path-style-access</name>
    <value>true</value>
  </property>
  <property>
    <name>fs.s3a.impl</name>
    <value>org.apache.hadoop.fs.s3a.S3AFileSystem</value>
  </property>
</configuration>

The configuration provides the nuts and bolts we need to access the metadata
database, using the JDBC connection url, username, and password properties, as
well as the data warehouse, using the hive.metastore.warehouse.dir, and the fs.s3a.*
properties.

Next, we need to create a docker compose file to run the metastore, which we do in
Example 2-12.

Example 2-12. Docker Compose for the Hive Metastore

version: "3.7"

services:
  metastore:
    image: apache/hive:3.1.3
    platform: linux/amd64
    hostname: metastore
    container_name: metastore
    volumes:
      - ${PWD}/jars/hadoop-aws-3.2.0.jar:/opt/hive/lib/
      - ${PWD}/jars/mysql-connector-java-8.0.23.jar:/opt/hive/lib/      
      - ${PWD}/jars/aws-java-sdk-bundle-1.11.375.jar:/opt/hive/lib/
      - ${PWD}/conf:/opt/hive/conf
    environment:
      - SERVICE_NAME=metastore
      - DB_DRIVER=mysql
      - IS_RESUME="true"
    expose:
      - 9083
    ports:
      - target: 9083
        published: 9083
        protocol: tcp
        mode: host
    networks:
      - dldg
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With the metastore running, we are now in the driver seat to understand how to take
advantage of the Trino connector for Delta Lake.

Configuring and Using the Trino Connector
Trino uses configuration files called catalogs. They are used to describe the catalog
type (delta_lake, hive, and many more), and enable us to tune a given catalog to
optimize for reads and writes, and to manage additional connector configurations.
The minimum configuration for the Delta connector requires an addressable hive
metastore location thrift:hostname:port (if using Hive metastore). The other sup‐
ported catalogs are Amazon Glue.

The following configuration in Example 2-13 configures the connector pointing to
the hive metastore.

Example 2-13. The Delta Lake connector properties

connector.name=delta_lake
hive.metastore=thrift
hive.metastore.uri=thrift://metastore:9083
delta.hive-catalog-name=metastore
delta.compression-codec=SNAPPY
delta.enable-non-concurrent-writes=true
delta.target-max-file-size=512MB
delta.unique-table-location=true
delta.vacuum.min-retention=7d

The following property must be set if there is a chance of multiple
writers making non-atomic changes to a table. This is most often
the case with amazon s3, and ensures that the table remains consis‐
tent.

delta.enable-non-concurrent-writes=true

The property file above can be saved as delta.properties. As long as the file is
copied into the Trino catalog directory (/etc/trino/catalog/), then we’ll be able to
read, write, and delete from the underlying hive.metastore.warehouse.dir , and do
a whole lot more.

Let’s look at what’s possible.

Using Show Catalogs
Using show catalogs is a simple first step to ensure that the delta connector has been
configured correctly, and shows up as a resource.
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trino> show catalogs;
Catalog
---------
 delta
 ...
(6 rows)

As long as we see delta in the list, we are golden and can move on to creating a
schema.

Creating a Schema
The notion of a schema is a bit overloaded. We have schemas that represent the
structured data describing the columns of our tables, but we also have schemas
representing a traditional hive database. This case is the latter. Using create schema
enables us to generate a managed location within our data warehouse that can act
as a boundary for access and governance, as well as to separate the physical table
data between bronze, silver, and golden tables. We’ll learn more about the Medallion
architecture in chapter 10, but for now let’s create a bronze_schema to store some raw
tables.

trino> create schema delta.bronze_schema;
CREATE SCHEMA

If we were greeted by an exception rather than seeing CREATE
SCHEMA returned, then it’s likely due to permissions issues writ‐
ing to the physical warehouse. The following is an example:

Query 20231001_182856_00004_zjwqg failed: Got excep-
tion: java.nio.file.AccessDeniedException s3a://com.new-
front.dldgv2/delta/bronze_schema.db: getFileStatus 
on s3a://com.newfront.dldgv2/delta/bronze_schema.db: 
com.amazonaws.services.s3.model.AmazonS3Exception: For-
bidden (Service: Amazon S3; Status Code: 403;

We can fix the problem by modifying our IAM permissions, or
ensuring we are using the correct IAM roles or access key, secret
access key pairs.

Show Schemas
Allows us to query a catalog to view available schemas.

trino> show schemas from delta;
Schema
--------------------
 default
 information_schema
 bronze_schema
(3 rows)
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If the schema we are looking for exists, then we are ready to move on to create some
tables.

Working with Tables
Table compatibility between the Trino and Delta ecosystems requires that we follow
some guidelines. We’ll look at data type interoperability, then create a table, add
some rows, and view the Delta metadata including the transaction history, as well
as tracking changes for change data feed (CDF). We’ll conclude by looking at table
optimization and vacuuming.

Data Types
There are a few caveats to creating tables using Trino especially when it comes to
type mapping differences between Trino and Delta Lake. The following table shown
in Table 2-1 can be used to ensure the appropriate types are used, and to steer clear of
incompatibility if our aim is interoperability.

Table 2-1. Delta to Trino Type Mapping

Delta Data Type Trino Data Type
BOOLEAN BOOLEAN

INTEGER INTEGER

BYTE TINYINT

SHORT SMALLINT

LONG BIGINT

FLOAT REAL

DOUBLE DOUBLE

DECIMAL(p,s) DECIMAL(p,s)

STRING VARCHAR

BINARY VARBINARY

DATE DATE

TIMESTAMPNTZ (TIMESTAMP_NTZ) TIMESTAMP(6)

TIMESTAMP TIMESTAMP(3) WITH TIME ZONE

ARRAY ARRAY

MAP MAP

STRUCT(...) ROW(...)

Create Table Options
The supported table options can be applied to our table using the WITH clause of the
CREATE TABLE syntax.
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Property Name Description Default
location File system location URI for table. This option

is deprecated. See the warning or how to enable
below

Will use a managed table
mapped to the location of the
hive.metastore.warehouse.dir or glue
catalog equivalent.

partitioned_by Columns to partition the table by No partitions
checkpoint_interval how often to commit changes to Delta Lake
change_data_feed_enabled track changes made to the table for use in

CDC/CDF applications
false

column_mapping_mode how to map the underlying parquet columns:
options (id, name, none)

none

Creating Table
We can create tables using the longform <catalog>.<schema>.<table> syntax, or
the short-form syntax <table> after calling use delta.<schema>. The following Exam‐
ple 2-14 provides an example using the short form create.

Example 2-14. Creating a Delta table with Trino

trino> use delta.bronze_schema;
CREATE TABLE ecomm_v1_clickstream (
  event_date DATE,
  event_time VARCHAR(255),
  event_type VARCHAR(255),
  product_id INTEGER,
  category_id BIGINT,
  category_code VARCHAR(255),
  brand VARCHAR(255),
  price DECIMAL(5,2),
  user_id INTEGER,
  user_session VARCHAR(255)
)
WITH (
    partitioned_by = ARRAY['event_date'],
    checkpoint_interval = 30,
    change_data_feed_enabled = false,
    column_mapping_mode = 'name'
);

The table generated using the prior DDL statement creates a managed table in our
data warehouse, that will be partitioned daily. The table structure represents the
Ecommerce data from the Flink section earlier in this chapter.
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Using CREATE TABLE with an existing table is deprecated,
instead use the system.register_table procedure. The
CREATE TABLE ... WITH (location=...) syntax can be
temporarily re-enabled using the delta.legacy-create-table-
with-existing-location.enabled catalog configuration property
or legacy_create_table_with_existing_location_enabled cat‐
alog session property.

Listing Tables
Using show tables will allow us to view the collection of tables within a given schema
in the delta catalog.

trino:bronze_schema> show tables;
Table
----------------------
 ecomm_v1_clickstream
(1 row)

Inspecting Tables with Describe
If we are not the owners of a given table, we can use describe to learn about the table
through its metadata.

trino> describe delta.bronze_schema."ecomm_v1_clickstream";
 
    Column     |     Type     | Extra | Comment
---------------+--------------+-------+---------
 event_date    | date         |       |
 event_time    | varchar      |       |
 event_type    | varchar      |       |
 product_id    | integer      |       |
 category_id   | bigint       |       |
 category_code | varchar      |       |
 brand         | varchar      |       |
 price         | decimal(5,2) |       |
 user_id       | integer      |       |
 user_session  | varchar      |       |
(10 rows)

Using Insert
Rows can be inserted directly using the command line, or through the use of the trino
client.

trino> INSERT INTO delta.bronze_schema."ecomm_v1_clickstream"
    VALUES
        (DATE '2023-10-01', '2023-10-01T19:10:05.704396Z', 'view', 
44600062, 2103807459595387724, 'health.beauty', 'nars', 35.79, 541312140, 
'72d76fde-8bb3-4e00-8c23-a032dfed738c'),
        (DATE('2023-10-01'), '2023-10-01T19:20:05.704396Z', 'view', 54600062, 
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2103807459595387724, 'health.beauty', 'lancome', 122.79, 541312140, 
'72d76fde-8bb3-4e00-8c23-a032dfed738c');
INSERT: 2 rows

Querying Delta Tables
Using the select operator allows you to query your Delta tables.

trino> select event_date, product_id, brand, price from 
delta.bronze_schema."ecomm_v1_clickstream";
 
 event_date | product_id |  brand  | price
------------+------------+---------+--------
 2023-10-01 |   44600062 | nars    |  35.79
 2023-10-01 |   54600062 | lancome | 122.79
(2 rows)

Updating Rows

The standard update operator is available.

trino> UPDATE delta.bronze_schema."ecomm_v1_clickstream"
    -> SET category_code = 'health.beauty.products'
    -> where category_id = 2103807459595387724;

Creating Tables with Selection

We can create a table using another table. This is referred to as CREATE TABLE AS, and
allows us to create a new physical Delta table by referencing another table.

trino> CREATE TABLE delta.bronze_schema."ecomm_lite" 
  AS select event_date, product_id, brand, price 
  FROM delta.bronze_schema."ecomm_v1_clickstream";

Table Operations
There are many table operations to consider for optimal performance, and to declut‐
ter the physical file system. Chapter 6 covers all the maintenance functions in more
detail, so the following operations are shown for consistency.

Vacuum
The vacuum operation will clean up files that are no longer required in the current
version of a given Delta table. We go into more details of why vacuuming is required
as well as the caveats to keep in mind to support table recovery and rolling back to
prior versions with time travel in Chapter 6.

With respect to Trino, the delta catalog property delta.vacuum.min-retention pro‐
vides a gating mechanism to protect a table in the case of an arbitrary call to vacuum
with a low number of days or hours.
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trino> CALL delta.system.vacuum('bronze_schema', 'ecomm_v1_clickstream', '1d');
 
Retention specified (1.00d) is shorter than the minimum retention configured 
in the system (7.00d). Minimum retention can be changed with delta.vacuum.min-
retention configuration property or delta.vacuum_min_retention session property

Otherwise, the vacuum operation will delete the physical files that are no longer
needed by the table.

Table Optimize
Depending on the size of the table parts created as we make modifications to our
tables with Trino, we run the risk of creating too many small files representing our
tables. A simple technique to combine the small files into larger files is bin-packing
optimize (which we cover in Chapter 6 and in the performance tuning deep dive in
Chapter 11). To trigger compaction, we can call ALTER TABLE with EXECUTE.

trino> ALTER TABLE delta.bronze_schema."ecomm_v1_clickstream" EXECUTE optimize;

We can also provide more hints to change the behavior of the optimize operation.
The following will ignore files greater than 10MB.

trino> ALTER TABLE delta.bronze_schema."ecomm_v1_clickstream" EXECUTE opti-
mize(file_size_threshold => '10MB')

While the following will only attempt to compact table files within the partition
(event_date="2023-10-01")

trino> ALTER TABLE delta.bronze_schema."ecomm_v1_clickstream" EXECUTE optimize
WHERE event_date = "2023-10-01"

Metadata Tables
The connector exposes several metadata tables for each Delta Lake table that contain
information about their internal structure. We can query these tables to learn more
about our tables and to inspect changes and recent history.

Table History

Each transaction is recorded in the <table>$history metadata table.

trino> describe delta.bronze_schema."ecomm_v1_clickstream$history";
        Column        |            Type             | Extra | Comment
----------------------+-----------------------------+-------+---------
 version              | bigint                      |       |
 timestamp            | timestamp(3) with time zone |       |
 user_id              | varchar                     |       |
 user_name            | varchar                     |       |
 operation            | varchar                     |       |
 operation_parameters | map(varchar, varchar)       |       |
 cluster_id           | varchar                     |       |
 read_version         | bigint                      |       |
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 isolation_level      | varchar                     |       |
 is_blind_append      | boolean                     |       |

We can query the metadata table. Let’s look at the last three transactions for our
ecomm_v1_clickstream table.

trino> select version, timestamp, operation from 
delta.bronze_schema."ecomm_v1_clickstream$history";
 version |          timestamp          |  operation
---------+-----------------------------+--------------
       0 | 2023-10-01 19:47:35.618 UTC | CREATE TABLE
       1 | 2023-10-01 19:48:41.212 UTC | WRITE
       2 | 2023-10-01 23:01:13.141 UTC | OPTIMIZE
(3 rows)

Change Data Feed
Allows reading Change Data Feed (CDF) entries to expose row-level changes between
two versions of a Delta Lake table. When the change_data_feed_enabled table
property is set to true on a specific Delta Lake table, the connector records change
events for all data changes on the table.

trino> use delta.bronze_schema;
CREATE TABLE ecomm_v1_clickstream (
  ...
)
WITH (
    change_data_feed_enabled = true
);

Now each row of each transaction is recorded (with the operation type) enabling us
to rebuild the state of a table, or walk through the changes after a specific point in
time to a table.

For example, if we’d like to view all changes since version 0 of a table, we could
execute the following.

trino> select event_date, _change_type, _commit_version, _commit_timestamp 
from TABLE(
  delta.system.table_changes(
    schema_name => 'bronze_schema',
    table_name => 'ecomm_v1_clickstream',
    since_version => 0
  )
);

And view the changes made. In the example use case, we’ve simply inserted two rows.

event_date | _change_type | _commit_version |      _commit_timestamp
------------+--------------+-----------------+-----------------------------
 2023-10-01 | insert       |               1 | 2023-10-01 19:48:41.212 UTC
 2023-10-01 | insert       |               1 | 2023-10-01 19:48:41.212 UTC
(2 rows)
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Viewing Table Properties
It is useful to be able to view the table properties associated with our tables. We can
use the metadata table <table>$properties to view the associated delta tblproperties.

trino> select * from  delta.bronze_schema."ecomm_v1_clickstream$properties";
 
               key               | value
---------------------------------+-------
 delta.enableChangeDataFeed      | true
 delta.columnMapping.maxColumnId | 10
 delta.columnMapping.mode        | name
 delta.checkpointInterval        | 30
 delta.minReaderVersion          | 2
 delta.minWriterVersion          | 5

Modifying Table Properties
If we want to modify the underlying table properties of our Delta table, we’ll need
to use the Delta connectors alias for the supported table properties. For example,
change_data_feed_enabled will map to the delta.enableChangeDataFeed property.

trino> ALTER TABLE delta.bronze_schema."ecomm_v1_clickstream"
SET PROPERTIES "change_data_feed_enabled" = false;

Deleting Tables
Using the DROP TABLE operation, we can permanently remove a table that is no
longer needed.

trino> DROP TABLE delta.bronze_schema."ecomm_lite";

There is a lot more that we can do with the Trino connector that is out of scope for
this book, for now we will say goodbye to Trino and move on to Delta with Rust.
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CHAPTER 3

Maintaining Your Delta Lake

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the sixth chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

The process of keeping our Delta Lake tables running efficiently over time is akin
to any kind of preventative maintenance for your vehicle or any other alternative
mode of transportation (bikes, scooters, rollerblades). Like in life, we wouldn’t wait
for our tires to go flat before assessing the situation and finding a solution. We’d take
action. In the tire use case, we’d start with simple observations, look for leaks, and
ask ourselves “does the tire need to be patched?”, could the problem be as simple as
“adding some additional air”, or is this situation more dire where we’ll need to replace
the whole tire. The process of assessing the situation, finding a remedy, and applying
a solution can be applied to our Delta Lake tables as well and is all part of the general
process of maintaining our Delta Lake tables. In essence, we just need to think in
terms of cleaning, tuning, repairing, and replacing.

In the sections that follow, we’ll learn to take advantage of the Delta Lake utility
methods and learn about their associated configurations (aka table properties). We’ll
walk through some common methods for cleaning, tuning, repairing and replacing
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our tables, in order to lend a helping hand while optimizing the performance and
health of our tables, and ultimately building a firm understanding of the cause and
effect relationships of the actions we take.

Using Delta Lake Table Properties
Delta Lake provides many utility functions to assist with the general maintenance
(cleaning and tuning), repair, restoration, and even replacement for our critical
tables; all of which are valuable skills for any data engineer. We’ll begin this chapter
with an introduction to some of the common maintenance-related Delta Lake table
properties, and a simple exercise showcasing how to apply, modify, and remove table
properties.

Table 3-1 will be referenced throughout the rest of this chapter, and whenever you
need a handy reference. Each row provides the property name, internal data type, and
the associated use case pertaining to cleaning, tuning, repairing, or replacing your
Delta Lake tables.

The metadata stored alongside our table definitions include TBLPROPERTIES. With
Delta Lake these properties are used to change the behavior of the utility methods.
This makes it wickedly simple to add or remove properties, and control the behavior
of your Delta Lake table.

Table 3-1. Delta Lake Table Properties Reference

Property Data Type Use With Default
delta.logRetentionDuration CalendarInterval Cleaning interval 30 days
delta.deletedFileRetentionDuration CalendarInterval Cleaning interval 1 week
delta.setTransactionRetentionDuration CalendarInterval Cleaning, Repairing (none)
delta.targetFileSizea String Tuning (none)
delta.tuneFileSizesForRewritesa Boolean Tuning (none)
delta.autoOptimize.optimizeWritea Boolean Tuning (none)
delta.autoOptimize.autoCompacta Boolean Tuning (none)
delta.dataSkippingNumIndexedCols Int Tuning 32
delta.checkpoint.writeStatsAsStruct Boolean Tuning (none)
delta.checkpoint.writeStatsAsJson Boolean Tuning true
a Properties exclusive to Databricks.

The beauty behind using tblproperties is that they affect only the metadata of our
tables, and in most cases don’t require any changes to the physical table structure.
Additionally, being able to opt-in, or opt-out, allows us to modify Delta Lake’s
behavior without the need to go back and change any existing pipeline code, and in
most cases without needing to restart, or redeploy, our streaming applications.
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The general behavior when adding or removing table properties
is no different than using common data manipulation language
operators (DML), which consist of insert, delete, update, and in
more advanced cases, upserts, which will insert, or update a row
based on a match. Chapter 12 will cover more advanced DML
patterns with Delta.
Any table changes will take effect, or become visible, during the
next transaction (automatically) in the case of batch, and immedi‐
ately with our streaming applications.
With streaming Delta Lake applications, changes to the table,
including changes to the table metadata, are treated like any
ALTER TABLE command. Other changes to the table that don’t
modify the physical table data, like with the utility functions vac
uum and optimize, can be externally updated without breaking the
flow of a given streaming application.
Changes to the physical table or table metadata are treated equally,
and generate a versioned record in the Delta Log. The addition
of a new transaction results in the local synchronization of the
DeltaSnapshot, for any out of sync (stale) processes. This is all due
to the fact that Delta Lake supports multiple concurrent writers,
allowing changes to occur in a decentralized (distributed) way, with
central synchronization at the tables Delta Log.

There are other use cases that fall under the maintenance umbrella that require inten‐
tional action by humans and the courtesy of a heads up to downstream consumers.
As we close out this chapter, we’ll look at using REPLACE TABLE to add partitions.
This process can break active readers of our tables, as the operation rewrites the
physical layout of the Delta table.

Regardless of the processes controlled by each table property, tables at the point of
creation using CREATE TABLE, or after the point of creation via ALTER TABLE,
which allows us to change the properties associated with a given table.

To follow along the rest of the chapter will be using the covid_nyt dataset (included
in the book’s GitHub repo) along with the companion docker environment. To get
started, execute the following.

$ export DLDG_DATA_DIR=~/path/to/delta-lake-definitive-guide/datasets/
$ export DLDG_CHAPTER_DIR=~/path/to/delta-lake-definitive-guide/ch6
$ docker run --rm -it \
  --name delta_quickstart \
  -v $DLDG_DATA_DIR/:/opt/spark/data/datasets \
  -v $DLDG_CHAPTER_DIR/:/opt/spark/work-dir/ch6 \
  -p 8888-8889:8888-8889 \
  delta_quickstart
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The command will spin up the JupyterLab environment locally. Using the url pro‐
vided to you in the output, open up the jupyterlab environment, and click into ch6/
chp6_notebook.ipynb to follow along.

Create an Empty Table with Properties
We’ve created tables many ways throughout this book, so let’s simply generate an
empty table with the SQL CREATE TABLE syntax. In Example 3-1 below, we create a
new table with a single date column and one default table property delta.logRetention‐
Duration. We will cover how this property is used later in the chapter.

Example 3-1. Creating a Delta Table with default table properties

$ spark.sql("""
    CREATE TABLE IF NOT EXISTS default.covid_nyt (
      date DATE
    ) USING DELTA
     TBLPROPERTIES('delta.logRetentionDuration'='interval 7 days');
""")

It is worth pointing out that the covid_nyt dataset has 6 columns.
In the preceding example we are purposefully being lazy since we
can steal the schema of the full covid_nyt table while we import it
in the next step. This will teach us how to evolve the schema of the
current table by filling in missing columns in the table definition.

Populate the Table
At this point, we have an empty Delta Lake table. This is essentially a promise of a
table, but at this time it only contains the /{tablename}/_delta_log directory, and an
initial log entry with the schema and metadata of our empty table. If you want to run
a simple test to confirm, you can run the following command to show the backing
files of the table.

$ spark.table("default.covid_nyt").inputFiles()

The inputFiles command will return an empty list. That is expected but also feels a
little lonely. Let’s go ahead and bring some joy to this table by adding some data. We’ll
execute a simple read-through operation of the covid_nyt Parquet data directly into
our managed Delta Lake table (the empty table from before).

From your active session, execute the following block of code to merge the covid_nyt
dataset into the empty default.covid_nyt table.
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The COVID-19 dataset has the date column represented as a
STRING. For this exercise, we have set the date column to a DATE
type, and use the withColumn("date", to_date("date", "yyyy-
MM-dd")) in order to respect the existing data type of the table.

$ from pyspark.sql.functions import to_date
    (spark.read
      .format("parquet")
      .load("/opt/spark/work-dir/rs/data/COVID-19_NYT/*.parquet")
      .withColumn("date", to_date("date", "yyyy-MM-dd"))
      .write
      .format("delta")
      .saveAsTable("default.covid_nyt")
    )

You’ll notice the operation fails to execute.

$ pyspark.sql.utils.AnalysisException: Table default.covid_nyt already exists

We just encountered an AnalysisException. Luckily for us, this exception is blocking
us for the right reasons. In the prior code block the exception that is thrown is due to
the default behavior of the DataFrameWriter in Spark which defaults to errorIfExists.
This just means if the table exists, then raise an exception rather than trying to do
anything that could damage the existing table.

In order to get past this speed bump, we’ll need to change the write mode of the
operation to append. This changes the behavior of our operation stating that we are
intentionally adding records to an existing table.

Let’s go ahead and configure the write mode as append.

(spark.read
  ...
  .write
  .format("delta")
  .mode("append")
  ...
)

Okay. We made it past one hurdle and are no longer being blocked by the “table
already exists” exception, however, we were met with yet another AnalysisException.

$ pyspark.sql.utils.AnalysisException: A schema mismatch detected when writing 
to the Delta table (Table ID: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx)

This time the AnalysisException is thrown due to a schema mismatch. This is how
the Delta protocol protects us (the operator) from blindly making changes when
there is a mismatch between the expected (committed) table schema (that currently
has 1 column), and our local schema (from reading the covid_nyt parquet) that is
currently uncommitted and has 6 columns. This exception is another guardrail that
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is in place to block the accidental pollution of our table schema, a process known as
schema enforcement.

Schema Enforcement and Evolution
Delta Lake utilizes a technique from traditional data warehouses called schema-on-
write. This simply means that there is a process in place to check the schema of
the writer against the existing table prior to a write operation being executed. This
provides a single source of truth for a table schema based on prior transactions.

Schema Enforcement
Is the controlling process that checks an existing schema before allowing a write
transaction to occur, and results in throwing an exception in the case of a
mismatch.

Schema Evolution
Is the process of intentionally modifying an existing schema in a way that enables
backwards compatibility. This is traditionally accomplished using ALTER TABLE
{t} ADD COLUMN(S), which is also supported in Delta Lake, along with the
ability to enable the mergeSchema option on write.

Evolve the Table Schema
The last step required to add the covid_nyt data to our existing table, is for us to
explicitly state that yes, we approve of the schema changes we are bringing to the
table, and intend to commit both the actual table data and the modifications to the
table schema.

$ (spark.read
    .format("parquet")
    .load("/opt/spark/work-dir/rs/data/COVID-19_NYT/*.parquet")
    .withColumn("date", to_date("date", "yyyy-MM-dd"))
    .write
    .format("delta")
    .mode("append")
    .option("mergeSchema", "true")
    .saveAsTable("default.covid_nyt")
  )

Success. We now have a table to work with, the result of executing the preceding
code. As a short summary, we needed to add two modifiers to our write operation for
the following reasons:

1. We updated the write mode to an append operation. This was necessary given we1.
created the table in a separate transaction, and the default write mode (errorIfEx‐
ists) short circuits the operation when the Delta Lake table already exists.
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2. We updated the write operation to include the mergeSchema option enabling us2.
to modify the covid_nyt table schema, adding the 5 additional columns required
by the dataset, within the same transaction where we physically also added the
nyc_taxi data.

With everything said and done, we now have actual data in our table, and we evolved
the schema from the parquet-based covid_nyt dataset in the process.

You can take a look at the complete table metadata by executing the following
DESCRIBE command.

$ spark.sql("describe extended default.covid_nyt").show(truncate=False)

You’ll see the complete table metadata after executing the DESCRIBE including the
columns (and comments), partitioning (in our case none), as well as all available
tblproperties. Using describe is a simple way of getting to know our table, or frankly
any table you’ll need to work with in the future.

Alternatives to Automatic Schema Evolution
In the previous case, we used .option(“mergeSchema”, “true”) to modify the behavior
of the Delta Lake writer. While this option simplifies how we evolve our Delta Lake
table schemas, it comes at the price of not being fully aware of the changes to our
table schema. In the case where there are unknown columns being introduced from
an upstream source, you’ll want to know which columns are intended to be brought
forward, and which columns can be safely ignored.

Intentionally Adding Columns with Alter Table

If we knew that we had 5 missing columns on our `default.covid_nyt` table, we could
run an ALTER TABLE to add the missing columns.

$ spark.sql("""
  ALTER TABLE default.covid_nyt
  ADD COLUMNS (
    county STRING,
    state STRING,
    fips INT,
    cases INT,
    deaths INT
  );
  """)

This process may seem cumbersome given we learned how to automatically merge
modifications to our table schema, but it is ultimately more expensive to rewind
and undo surprise changes. With a little up front work, it isn’t difficult to explicitly
opt-out of automatic schema changes.

(spark.read
      .format("parquet")
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      .load("/opt/spark/work-dir/rs/data/COVID-19_NYT/*.parquet")
      .withColumn("date", to_date("date", "yyyy-MM-dd"))
      .write
      .format("delta")
      .option("mergeSchema", "false")
      .mode("append")
      .saveAsTable("default.covid_nyt"))
   )

And voila. We get all the expected changes to our table intentionally, with zero
surprises, which helps keep our tables clean and tidy.

Add or Modify Table Properties
The process of adding or modifying existing table properties is simple. If a property
already exists, then any changes will blindly overwrite the existing property. Newly
added properties will be appended to the set of table properties.

To showcase this behavior, execute the following ALTER TABLE statement in your
active session.

$ spark.sql("""
  ALTER TABLE default.covid_nyc 
  SET TBLPROPERTIES (
    'engineering.team_name'='dldg_authors',
    'engineering.slack'='delta-users.slack.com'
  )
  """)
 

This operation adds two properties to our table metadata, a pointer to the team name
(dldg_authors) and the slack organization (delta-users.slack.com) for the authors
of this book. Anytime we modify a table’s metadata, the changes are recorded in
the table history. To view the changes made to the table, including the change we
just made to the table properties, we can call the history method on the DeltaTable
python interface.

$ from delta.tables import DeltaTable
  dt = DeltaTable.forName(spark, 'default.covid_nyt')
  dt.history(10).select("version", "timestamp", "operation").show()

Which will output the changes made to the table.

+-------+--------------------+-----------------+
|version|           timestamp|        operation|
+-------+--------------------+-----------------+
|      2|2023-06-07 04:38:...|SET TBLPROPERTIES|
|      1|2023-06-07 04:14:...|            WRITE|
|      0|2023-06-07 04:13:...|     CREATE TABLE|
+-------+--------------------+-----------------+

60 | Chapter 3: Maintaining Your Delta Lake



To view (or confirm) the changes from the prior transaction you can call SHOW
TBLPROPERTIES on the covid_nyt table.

$ spark.sql("show tblproperties default.covid_nyt").show(truncate=False)

Or you can execute the detail() function on the DeltaTable instance from earlier.

$ dt.detail().select("properties").show(truncate=False)

To round everything out, we’ll now learn to remove unwanted table properties, then
our journey can continue by learning to clean and optimize our Delta Lake tables.

Remove Table Properties
There would be no point in only being able to add table properties, so to close out the
beginning of this chapter, let’s look at how to use ALTER TABLE table_name UNSET
TBLPROPERTIES.

Let’s say we accidentally misspelled a property name, for example, delta.loRgeten
tionDuratio, rather than the actual property delta.logRetentionDuration, while
this mistake isn’t the end of the world, there would be no reason to keep it around.

To remove the unwanted (or misspelled) properties, we can execute UNSET TBLPRO
PERTIES on our ALTER TABLE command.

$ spark.sql("""
    ALTER TABLE default.covid_nyt
    UNSET TBLPROPERTIES('delta.loRgetentionDuratio')
  """)

And just like that, the unwanted property is no longer taking up space in the table
properties.

We just learned to create delta lake tables using default table properties at the point of
initial creation, relearned the rules of schema enforcement and how to intentionally
evolve our table schemas, as well as how to add, modify, and remove properties. Next
we’ll explore keeping our Delta Lake tables clean and tidy.

(Spark Only) Default Table Properties
Once you become more familiar with the nuances of the various Delta Lake table
properties, you can provide your own default set of properties to the SparkSession
using the following spark config prefix:

spark.databricks.delta.properties.defaults.<conf>

While this only works for Spark workloads, you can probably imagine many scenar‐
ios where the ability to automatically inject properties into your pipelines could be
useful.
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1 Newton’s Third Law

spark...delta.defaults.logRetentionDuration=interval 2 weeks

spark...delta.defaults.deletedFileRetentionDuration=interval 28 days

Speaking of useful. Table properties can be used for storing metadata about a table
owner, engineering team, communication channels (slack and email), and essentially
anything else that helps to extend the utility of the descriptive table metadata, and
lead to simplified data discovery and capture the owners and humans accountable
for dataset ownership. As we saw earlier, the table metadata can store a wealth of
information extending well beyond simple configurations.

Table 3-2 lists some example table properties that can be used to augment any Delta
table. The properties are broken down into prefixes, and provide additional data
catalog style information alongside your existing table properties.

Table 3-2. Using Table Properties for Data Cataloging

Property Description

catalog.team_name Provide the team name and answer the question “Who is accountable for the
table?”

catalog.engineering.comms.slack Provide the slack channel for the engineering team: use a permalink like https:/
/delta-users.slack.com/archives/CG9LR6LN4 since channel names can change
over time.

catalog.engineering.comms.email dldg_authors@gmail.com : note this isn’t a real email, but you get the point.

catalog.table.classification Can be used to declare the type of table. Examples: pii, sensitive-pii, general, all-
access, etc. These values can be used for role-based access as well. (integrations
are outside of the scope of this book)

Delta Table Optimization
Remember the quote “each action has an equal and opposite reaction”1? Much like the
laws of physics, changes can be felts as new data is inserted (appended), modified
(updated), merged (upserted), or removed (deleted) from our Delta Lake tables
(the action), the reaction in the system is to record each operation as an atomic
transaction (version, timestamp, operations, and more), ensuring the table continues
to serve not only its current use cases, but also ensuring it also retains enough history
to allow us to rewind (time-travel) back to earlier state (point in the table’s time),
allowing us to fix (overwrite), or recover (replace) the table in the case that larger
problems are introduced to the table.

However, before getting into the more complicated maintenance operations, let’s first
look at common problems that can sneak into a table over time, one of the best
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known of these is called the small file problem. Let’s walk through the problem and
solution now.

The Problem with Big Tables and Small Files
When we talk about the small file problem, we are actually talking about an issue
that isn’t unique to Delta Lake, but rather an issue with network IO, and a high
(open-cost) for unoptimized tables consisting of way too many small files. Small files
can be classified as any file under 64kb.

How can too many small files hurt us? The answer is in many different ways, but
the common thread between all problems is that they sneak up over time, and
require modifications to the layout of the physical files encapsulating our tables. Not
recognizing when your tables begin to slow down and suffer under the weight of
themselves can lead to potentially costly increases to distributed compute in order to
efficiently open, and execute a query.

There is a true cost in terms of the number of operational steps required before the
table is physically loaded into memory, which tends to increase over time until the
point where a table can no longer be efficiently loaded.

This is felt much more in traditional Hadoop style ecosystems, like
MapReduce and Spark, where the unit of distribution is bound to
a task, and a file consists of “blocks” and each block takes 1 task.
If we have 1 million files in a table that are 1 GB each, and a
block size of 64MB, then we will need to distribute a whopping
15.65 million tasks to read the entire table. It is ideal to optimize
the target file size of the physical files in our tables to reduce file
system IO and network IO. When we encounter unoptimized files
(the small files problem), then the performance of our tables suffer
greatly because of it. For a solid example, say we had the same large
table (~1 TB) but the files making up the table were evenly split at
around 5kb each. This means we’d have 200k files per 1 GB, and
around 200 million files to open before loading our table. In most
cases the table would never open.

For fun, we are going to recreate a very real small files problem, and then figure out
how to optimize the table. To follow along, head back to the session from earlier in the
chapter, as we’ll continue to use the covid_nyt dataset in the following examples.

Creating the Small File Problem
The covid_nyt dataset has over a million records. The total size of the table is less
than 7mb split across 8 partitions which is a small dataset.
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$ ls -lh /opt/spark/work-dir/ch6/spark-warehouse/covid_nyt/*.parquet | wc -l
8

What if we flipped the problem around and had 9000, or even 1 million files repre‐
senting the covid_nyt dataset? While this use case is extreme, we’ll learn later on in
the book (chapter 9) that streaming applications are a typical culprit with respect to
creating tons of tiny files!

Let’s create another empty table named default.nonoptimal_covid_nyt and run some
simple commands to unoptimize the table. For starters, execute the following command.

$ from delta.tables import DeltaTable
  (DeltaTable.createIfNotExists(spark)
    .tableName("default.nonoptimal_covid_nyt")
    .property("description", "table to be optimized")
    .property("catalog.team_name", "dldg_authors")
    .property("catalog.engineering.comms.slack",
      "https://delta-users.slack.com/archives/CG9LR6LN4")
    .property("catalog.engineering.comms.email","dldg_authors@gmail.com")
    .property("catalog.table.classification","all-access")
    .addColumn("date", "DATE")
    .addColumn("county", "STRING")
    .addColumn("state", "STRING")
    .addColumn("fips", "INT")
    .addColumn("cases", "INT")
    .addColumn("deaths", "INT")
    .execute())

Now that we have our table, we can easily create way too many small files using the
normal default.covid_nyt table as our source. The total number of rows in the table is
1,111,930. If we repartition the table, from the existing 8, to say 9000 partitions, this
will split the table into an even 9000 files at around 5kb per file.

$ (spark
   .table("default.covid_nyt")
   .repartition(9000)
   .write
   .format("delta")
   .mode("overwrite")
   .saveAsTable("default.nonoptimal_covid_nyt")
  )

If you want to view the physical table files, you can run the follow‐
ing command.

$ docker exec -it delta_quickstart bash \
-c "ls -l /opt/spark/work-dir/ch6/spark-warehouse/nonop-
timal_covid_nyt/*parquet | wc -l"

You’ll see there are exactly 9000 files.
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We now have a table we can optimize. Next we’ll introduce Optimize. As a utility,
consider it to be your friend. It will help you painlessly consolidate the many small
files representing our table into a few larger files. All in the blink of an eye.

Using Optimize to Fix the Small File Problem
Optimize is a Delta utility function that comes in two variants: z-order and bin-
packing. The default is bin-packing.

Optimize
What exactly is bin-packing? At a high-level, this is a technique that is used to
coalesce many small files into fewer large files, across an arbitrary number of bins. A
bin is defined as a file of a maximum file size (the default for Spark Delta Lake is 1GB,
Delta Rust is 250mb).

The OPTIMIZE command can be tuned using a mixture of configurations.

For tuning the optimize thresholds, there are a few considerations to keep in mind:

• (spark only) spark.databricks.delta.optimize.minFileSize (long) is used to•
group files smaller than the threshold (in bytes) together before being rewritten
into a larger file by the OPTIMIZE command.

• (spark only) spark.databricks.delta.optimize.maxFileSize (long) is used to•
specify the target file size produced by the OPTIMIZE command

• (spark-only) spark.databricks.delta.optimize.repartition.enabled (bool)•
is used to change the behavior of OPTIMIZE and will use repartition(1) instead of
coalesce(1) when reducing

• (delta-rs and non-OSS delta) The table property delta.targetFileSize•
(string) can be used with the delta-rs client, but is currently not supported
in the OSS delta release. Example being 250mb.

The OPTIMIZE command is deterministic and aims to achieve an evenly distributed
Delta Lake table (or specific subset of a given table).

To see optimize in action, we can execute the optimize function on the nonopti
mal_covid_nyt table. Feel free to run the command as many times as you want,
Optimize will only take effect a second time if new records are added to the table.

$ results_df = (DeltaTable
   .forName(spark, "default.nonoptimal_covid_nyt")
   .optimize()
   .executeCompaction())
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The results of running the optimize operation are returned both locally in a Data‐
Frame (results_df) and available via the table history as well. To view the OPTIMIZE
stats, we can use the history method on our DeltaTable instance.

$ from pyspark.sql.functions import col
 (
  DeltaTable.forName(spark, "default.nonoptimal_covid_nyt")
  .history(10)
  .where(col("operation") == "OPTIMIZE")
  .select("version", "timestamp", "operation", "operationMetrics.numRemoved-
Files", "operationMetrics.numAddedFiles")
  .show(truncate=False))

The resulting output will produce the following table.

+-------+-----------------------+---------+---------------+-------------+
|version|timestamp              |operation|numRemovedFiles|numAddedFiles|
+-------+-----------------------+---------+---------------+-------------+
|2      |2023-06-07 06:47:28.488|OPTIMIZE |9000           |1            |
+-------+-----------------------+---------+---------------+-------------+

The important column for our operation shows that we removed 9000 files (numRemo
vedFiles) and generated one compacted file (numAddedFiles).

For Delta Streaming and Streaming Optimizations flip ahead to
chapter 9.

Z-Order Optimize
Z-ordering is a technique to colocate related information in the same set of files.
The related information is the data residing in your table’s columns. Consider the
covid_nyt dataset. If we knew we wanted to quickly calculate the death rate by state
over time then utilizing Z-ORDER BY would allow us to skip opening files in our tables
that don’t contain relevant information for our query. This co-locality is automatically
used by the Delta Lake data-skipping algorithms. This behavior dramatically reduces
the amount of data that needs to be read.

For tuning the Z-ORDER BY:

• delta.dataSkippingNumIndexedCols (int) is the table property responsible for•
reducing the number of stats columns stored in the table metadata. This defaults
to 32 columns.

• delta.checkpoint.writeStatsAsStruct (bool) is the table property responsible for•
enabling writing of columnar stats (per transaction) as parquet data. The default
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value is false as not all vendor-based Delta Lake solutions support reading the
struct based stats.

Chapter 12 will cover performance tuning in more detail, so we will
dip our toes in now, and cover general maintenance considerations.

Table Tuning and Management
We just covered how to optimize our tables using the OPTIMIZE command. In many
cases, where you have a table smaller than 1 GB, it is perfectly fine to just use
OPTIMIZE, however, it is common for tables to grow over time, and eventually we’ll
have to consider partitioning our tables as a next step for maintenance.

Partitioning your Tables
Table partitions can work for you, or oddly enough also against you, similar to the
behavior we observed with the small files problem, too many partitions can create a
similar problem but through directory level isolation instead. Luckily, there are some
general guidelines and rules to live by that will help you manage your partitions
effectively, or at least provide you with a pattern to follow when the time comes.

Table Partitioning Rules
The following rules will help you understand when to introduce partitions.

1. If your table is smaller than 1 TB. Don’t add partitions. Just use Optimize1.
to reduce the number of files. If bin-packing optimize isn’t providing the perfor‐
mance boost you need, you talk with your downstream data customers and learn
how they commonly query your table, you may be able to use z-order optimize
and speed up their queries with data co-location.

2. If you need to optimize how you delete? GDPR and other data governance2.
rules mean that table data is subject to change. More often than not, abiding
by data governance rules mean that you’ll need to optimize how you delete
records from your tables, or even retain tables like in the case of legal hold.
One simple use case is N-day delete, for example 30 day retention. Using daily
partitions, while not optimal depending on the size of your Delta Lake table, can
be used to simplify common delete patterns like data older than a given point
in time. In the case of 30 day delete, given a table partitioned by the column
datetime, you could run a simple job calling `delete from {table} where datetime
< current_timestamp() - interval 30 days`.
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Choose the right partition column
The following advice will help you select the correct column (or columns) to use
when partitioning. The most commonly used partition column is date. Follow these
two rules of thumb for deciding on what column to partition by:

1. Is the cardinality of a column very high? Do not use that column for partition‐1.
ing. For example, if you partition by a column userId and if there can be 1M+
distinct user IDs, then that is a bad partitioning strategy.

2. How much data will exist in each partition? You can partition by a column if2.
you expect data in that partition to be at least 1 GB.

The correct partitioning strategy may not immediately present itself, and that is okay,
there is no need to optimize until you have the correct use cases (and data) in front of
you.

Given the rules we just set forth, let’s go through the following use cases: defining
partitions on table creation, adding partitions to an existing table, and removing
(deleting) partitions. This process will provide a firm understanding for using parti‐
tioning, and after all, this is required for the long-term preventative maintenance of
our Delta Lake tables.

Defining Partitions on Table Creation
Let’s create a new table called default.covid_nyt_by_day which will use the date
column to automatically add new partitions to the table with zero intervention..

$ from pyspark.sql.types import DateType
  from delta.tables import DeltaTable
  (DeltaTable.createIfNotExists(spark)
    .tableName("default.covid_nyt_by_date")
    ...
    .addColumn("date", DateType(), nullable=False)
    .partitionedBy("date")
    .addColumn("county", "STRING")
    .addColumn("state", "STRING")
    .addColumn("fips", "INT")
    .addColumn("cases", "INT")
    .addColumn("deaths", "INT")
    .execute())

What’s going on in the creation logic is almost exactly the same as the last few
examples, the difference is the introduction of the partitionBy("date") on the
DeltaTable builder. To ensure the date column is always present the DDL includes a
non-nullable flag since the column is required for partitioning.

Partitioning requires the physical files representing our table to be laid out using
a unique directory per partition. This means all of the physical table data must
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be moved in order to honor the partition rules. Doing a migration from a non-
partitioned table to a partitioned table doesn’t have to be difficult, but supporting live
downstream customers can be a little tricky.

As a general rule of thumb, it is always better to come up with a plan to migrate
your existing data customers to the new table, in this example that would be the
new partitioned table, rather than introducing a potential breaking change into the
current table for any active readers.

Given the best practice at hand, we’ll learn how to accomplish this next.

Migrating from a Non-Partitioned to Partitioned Table
With the table definition for our partitioned table in hand, it becomes trivial to
simply read all of the data from our non-partitioned table and write the rows into our
newly created table. What’s even easier is that we don’t need to even specify how we
intend to partition since the partition strategy already exists in the table metadata.

$ (  
     spark
     .table("default.covid_nyt")
     .write
     .format("delta")
     .mode("append")
     .option("mergeSchema", "false")
     .saveAsTable("default.covid_nyt_by_date"))

This process creates a fork in the road. We currently have the prior version of the
table (non-partitioned) as well as the new (partitioned) table, and this means we
have a copy. During a normal cut-over, you typically need to continue to dual write
until your customers inform you they are ready to be fully migrated. Chapter 9 will
provide you with some useful tricks for doing more intelligent incremental merges,
and in order to keep both versions of the prior table in sync, using merge and
incremental processing is the way to go.

Partition Metadata Management
Because Delta Lake automatically creates and manages table partitions as new data is
being inserted and older data is being deleted, there is no need to manually call ALTER
TABLE table_name [ADD | DROP PARTITION] (column=value). This means you can
focus your time elsewhere rather than manually working to keep the table metadata
in sync with the state of the table itself.

Viewing Partition Metadata
To view the partition information, as well as other table metadata, we can create a
new DeltaTable instance for our table and call the detail method. This will return
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a DataFrame that can be viewed in its entirety, or filtered down to the columns you
need to view.

$ (DeltaTable.forName(spark,"default.covid_nyt_by_date")
    .detail()
    .toJSON()
    .collect()[0]
)

The above command converts the resulting DataFrame into a JSON object, and then
converts it into a List (using collect()) so we can access the JSON data directly.

{
  "format": "delta",
  "id": "8c57bc67-369f-4c84-a63e-38b8ac19bdf2",
  "name": "default.covid_nyt_by_date",
  "location": "file:/opt/spark/work-dir/ch6/spark-warehouse/covid_nyt_by_date",
  "createdAt": "2023-06-08T05:35:00.072Z",
  "lastModified": "2023-06-08T05:50:45.241Z",
  "partitionColumns": ["date"],
  "numFiles": 423,
  "sizeInBytes": 17660304,
  "properties": {
    "description": "table with default partitions",
    "catalog.table.classification": "all-access",
    "catalog.engineering.comms.email": "dldg_authors@gmail.com",
    "catalog.team_name": "dldg_authors",
    "catalog.engineering.comms.slack": "https://delta-users.slack.com/archives/
CG9LR6LN4"
  },
  "minReaderVersion": 1,
  "minWriterVersion": 2,
  "tableFeatures": ["appendOnly", "invariants"]
}

With the introduction to partitioning complete, it is time to focus on two critical
techniques under the umbrella of Delta Lake table lifecycle and maintenance: repair‐
ing and replacing tables.

Repairing, Restoring, and Replacing Table Data
Let’s face it. Even with the best intentions in place, we are all human and make
mistakes. In your career as a data engineer, one thing you’ll be required to learn is the
art of data recovery. When we recover data, the process is commonly called replaying
since the action we are taking is to rollback the clock, or rewind, to an earlier point
in time. This enables us to remove problematic changes to a table, and replace the
erroneous data with the “fixed” data.
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Recovering and Replacing Tables
When you can recover a table the catch is that there needs to be a data source
available that is in a better state than your current table. In chapter 11, we’ll be
learning about the Medallion Architecture, which is used to define clear quality
boundaries between your raw (bronze), cleansed (silver), and curated (gold) data sets.
For the purpose of this chapter, we will assume we have raw data available in our
bronze database table that can be used to replace data that became corrupted in our
silver database table.

Conditional Table Overwrites using ReplaceWhere
Say for example that data was accidentally deleted from our table for 2021-02-17.
There are other ways to restore accidentally deleted data (which we will learn next),
but in the case where data is permanently deleted, there is no reason to panic, we can
take the recovery data and use a conditional overwrite.

$ recovery_table = spark.table("bronze.covid_nyt_by_date")
  partition_col = "date"
  partition_to_fix "2021-02-17"
  table_to_fix = "silver.covid_nyt_by_date"
  
 
  (recovery_table
    .where(col(partition_col) == partition_to_fix)
    .write
    .format("delta")
    .mode("overwrite")
    .option("replaceWhere", f"{partition_col} == {partition_to_fix}")
    .saveAsTable("silver.covid_nyt_by_date")
  )

The previous code showcases the replace overwrite pattern, as it can either replace
missing data or overwrite the existing data conditionally in a table. This option allows
you to fix tables that may have become corrupt, or to resolve issues where data
was missing and has become available. The replaceWhere with insert overwrite isn’t
bound only to partition columns, and can be used to conditionally replace data in
your tables.

It is important to ensure the replaceWhere condition matches the
where clause of the recovery table, otherwise you may create a big‐
ger problem and further corrupt the table you are fixing. Whenever
possible, it is good to remove the chance of human error, so if you
find yourself repairing (replacing or recovering) data in your tables
often, it would be beneficial to create some guardrails to protect the
integrity of your table.
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Next, let’s look at conditionally removing entire partitions.

Deleting Data and Removing Partitions
It is common to remove specific partitions from our Delta Lake tables in order to
fulfill specific requests, for example when deleting data older than a specific point in
time, removing abnormal data, and generally cleaning up our tables.

Regardless of the case, if our intentions are to simply clear out a given partition, we
can do so using a conditional delete on a partition column. The following statement
conditionally deletes partitions (tpep_dropoff_date) that are older than the January
1st, 2023.

(
   DeltaTable
    .forName(spark, 'default.covid_nyt_by_date')
    .delete(col("date") < "2023-01-01"))

Removing data, or dropping entire partitions, can both be managed using conditional
deletes. When you delete based on a partition column, this is an efficient way to
delete data without the processing overhead of loading the physical table data into
memory, and instead uses the information contained in the table metadata, to prune
partitions based on the predicate. In the case of deleting based on non-partitioned
columns, the cost is higher as a partial or full table scan can occur, however whether
you are removing entire partitions or conditionally removing a subset of each table,
as an added bonus, if for any reason you need to change your mind, you can “undo”
the operation using time travel. We will learn how to restore our tables to an earlier
point in time next.

Remember to never remove delta lake table data (files) outside
of the context of the delta lake operations. This can corrupt your
table, and cause headaches.

The Lifecycle of a Delta Lake Table
Over time, as each Delta table is modified, older versions of the table remain on
disk in order to support table restoration, or to view earlier points in the table
time (time-travel), and to provide a clean experience for streaming jobs that may be
reading from various points in the table (which relate to different points in time, or
history across the table). This is why it is critical to ensure you have a long enough
lookback window for the delta.logRetentionDuration, so when you run vacuum on
your table, you are not immediately flooded with pages or unhappy customers of a
stream of data that just disappeared.
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Restoring your Table
In the case where a transaction has occurred, for example a delete from on your table
that was incorrect (cause life happens), rather than reloading the data (in the case
where we have a copy of the data), we can rewind and restore the table to an earlier
version. This is an important capability especially given that problems can arise
where the only copy of your data was in fact the data that was just deleted. When
there is nowhere left to go to recover the data, you have the ability to time-travel back
to an earlier version of your table.

What you’ll need to restore your table is some additional information. We can get this
all from the table history.

$ dt = DeltaTable.forName(spark, "silver.covid_nyt_by_date")
  (dt.history(10)
    .select("version", "timestamp", "operation")
    .show())

The prior code will show the last 10 operations on the Delta Lake table. In the case
where you want to rewind to a prior version, just look for the DELETE.

+-------+--------------------+--------------------+
|version|           timestamp|           operation|
+-------+--------------------+--------------------+
|      1|2023-06-09 19:11:...|              DELETE|
|      0|2023-06-09 19:04:...|CREATE TABLE AS S...|
+-------+--------------------+--------------------+

You’ll see the DELETE transaction occurred at version 1, so let’s restore the table back
to version 0.

$ dt.restoreToVersion(0)

All it takes to restore your table is knowledge about the operation you want to
remove. In our case, we removed the DELETE transaction. Because Delta Lake delete
operations occur in the table metadata, unless you run a process called VACUUM,
you can safely return to the prior version of your table.

Cleaning Up
When we delete data from our Delta lake tables this action is not immediate. In fact,
the operation itself simply removes the reference from the Delta Lake table snapshot
so it is like the data is now invisible. This operation means that we have the ability to
“undo” in the case where data is accidentally deleted. We can clean up the artifacts,
the deleted files, and truely purge them from the delta lake table using a process
called “vacuuming”.

Repairing, Restoring, and Replacing Table Data | 73



Vacuum
The vacuum command will clean up deleted files or versions of the table that are no
longer current, which can happen when you use the overwrite method on a table. If
you overwrite the table, all you are really doing is creating new pointers to new files
that are referenced by the table metadata. So if you overwrite a table often, the size of
the table on disk will grow exponentially. Luckily, there are some table properties that
help us control the behavior of the table as changes occur over time. These rules will
govern the vacuum process.

• delta.logRetentionDuration defaults to interval 30 days and keeps track of•
the history of the table. The more operations that occur, the more history that is
retained. If you won’t be using time-travel operations then you can try reducing
the number of days of history down to a week.

• delta.deletedFileRetentionDuration defaults to interval 1 week and can be•
changed in the case where delete operations are not expected to be undone. For
peace of mind, it is good to maintain at least 1 day for deleted files to be retained.

With the table properties set on our table, the vacuum command does most of
the work for us. The following code example shows how to execute the vacuum
operation.

$ (DeltaTable.forName(spark, "default.nonoptimal_covid_nyt")
   .vacuum()

Running vacuum on our table will result in all files being removed that are no longer
referenced by the table snapshot, including deleted files from prior versions of the
table. While vacuuming is a necessary process to reduce the cost of maintaining older
versions of a given table, there is a side effect that can accidentally leave downstream
data consumers (consumers) high and dry, in the case where they need to read an
early version of your table. There are other issues that can arise that will be covered in
chapter 9 when we tackle streaming data in and out of our Delta Lake tables.

The vacuum command will not run itself. When you are planning
to bring your table into production, and want to automate the
process of keeping the table tidy, you can setup a cron job to
call vacuum on a normal cadence (daily, weekly). It is also worth
pointing out that vacuum relies on the timestamps of the files,
when they were written to disk, so if the entire table was imported
the vacuum command will not do anything until you hit your
retention thresholds.
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Dropping Tables
Dropping a table is an operation with no undo. If you run a `delete from {table}`
you are essentially truncating the table, and can still utilize time travel (to undo the
operation), however, if you want to really remove all traces of a table please read
through the following warning box and remember to plan ahead by creating a table
copy (or CLONE) if you want a recovery strategy.

Dropping a table is an operation with no undo. If you run a `delete
from {table}` you are essentially truncating the table, and can uti‐
lize time travel (to undo the change). if you want to truly remove
all traces of your table, the chapter will conclude and show you
how to do that.
Removing all traces of a Delta Lake Table
If you want to do a permanent delete and remove all traces of a
managed Delta Lake table, and you understand the risks associated
with what you are doing, and really do intend to forgo any possibil‐
ity of table recovery, then you can drop the table using the SQL
DROP TABLE syntax.

$ spark.sql(f"drop silver.covid_nyt_by_date")

You can confirm the table is gone by attempting to list the files of
the Delta Lake table.

$ docker exec \
  -it delta_quickstart bash \
  -c "ls -l /opt/spark/work-dir/ch6/spark-warehouse/sil-
ver.db/covid_nyt_by_date/

Which will result in the following output. This shows that the table
really no longer exists on disk.

ls: cannot access './spark-warehouse/sil-
ver.db/covid_nyt_by_date/': No such file or directory

Summary
This chapter introduced you to the common utility functions available provided
within the Delta Lake project. We learned how to work with table properties,
explored the more common table properties we’d most likely encounter, and how
to optimize our tables to fix the small files problem. This led us to learn about
partitioning and restoring and replacing data within our tables. We explored using
time travel to restore our tables, and concluded the chapter with a dive into cleaning
up after ourselves and lastly permanently deleting tables that are no longer necessary.
While not every use case can fit cleanly into a book, we now have a great reference to
the common problems and solutions required to maintain your Delta Lake tables and
keep them running smoothly over time.
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CHAPTER 4

Streaming In and Out of Your Delta Lake

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the ninth chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Now more than ever the world is infused with real time data sources. From e-
commerce, social network feeds, and airline flight data to network security and IoT
devices, the volume of data sources is increasing while the frequency with which data
becomes available for usage is rapidly diminishing. One problem with this is while
some event-level operations make sense, much of the information we depend upon
lives in the aggregation of that information. So, we are caught between the dueling
priorities of a.) reducing the time to insights as much as possible and b.) capturing
enough meaningful and actionable information from aggregates. For years we’ve seen
processing technologies shifting in this direction and it was this environment in
which Delta Lake originated. What we got from Delta Lake was an open lakehouse
format that supports seamless integrations of multiple batch and stream processes
while delivering the necessary features like ACID transactions and scalable metadata
processing which are commonly absent in most distributed data stores. With this
in mind we can dig into some of the details for stream processing with Delta Lake,
namely the functionality that’s core to streaming processes, configuration options,
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specific usage methods, and the relationship of Delta Lake to Databricks’ Delta Live
Tables.

Streaming and Delta Lake
As we go along we want to cover some foundational concepts and then get into
more of the nuts and bolts of actually using Delta Lake for stream processing. We’ll
start with an overview of concepts and some terminology after which we will take
a look at a few of the stream processing frameworks we can use with Delta Lake
(for a more in depth introduction to stream processing see the Learning Spark book).
Then we’ll look at the core functionality, some of the options we have available, and
some common more advanced cases with Apache Spark. Then to finish it out we
will cover a couple of related features used in Databricks like Delta Live Tables and
how it relates to Delta Lake and then lastly review how to use the change data feed
functionality available in Delta Lake.

Streaming vs Batch Processing
Data processing as a concept makes sense to us: during its lifecycle we receive data,
perform various operations on it, then store and or ship it onward. So what primarily
differentiates a batch data process from a streaming data process? Latency. Above all
other things latency is the primary driver because these processes tend not to differ
in the business logic behind their design but instead focus on message/file sizes and
processing speed. The choice of which method to use is generally driven by time
requirements or service level/delivery agreements that should be part of requirements
gathering at the start of a project. The requirements should also consider the required
amount of time to get actionable insights from the data and will drive our decision
in processing methodology. One additional design choice we prefer is to use a frame‐
work that has a unified batch and streaming API because there are so few differences
in the processing logic, in turn providing us flexibility should requirements change
over time.
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Figure 4-1. The biggest difference between batch and stream processing is latency. We
can handle each individual file or message as they become available or as a group.

A batch process has defined beginning and ending points, i.e., there are boundaries
placed in terms of time and format. We may process “a file” or “a set of files” in a
batch process. In stream processing we look at it a little differently and treat our data
as unbounded and continuous instead. Even in the case of files arriving in storage
we can think of a stream of files (like log data) that continuously arrives. In the
end this unboundedness is really all that is needed to make a source a data stream.
In Figure 4-1 the batch process equates to processing groups of 6 files for each
scheduled run where the stream process is always running and processes each file as
it is available.

As we’ll see shortly when we compare some of the frameworks with which we can
use Delta Lake, stream processing engines like Apache Flink or Apache Spark can
work together with Delta Lake as either a starting point or an ending destination for
data streams. This multiple role means Delta Lake can be used at multiple stages of
different kinds of streaming workloads. Often we will see the storage layer as well
as a processing engine present for multiple steps of more complicated data pipelines
where we see both kinds of operation occurring. One common trait among most
stream processing engines is that they are just processing engines. Once we have
decoupled storage and compute, each must be considered and chosen, but neither
can operate independently.
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From a practical standpoint the way we think about other related concepts like
processing time and table maintenance is affected by our choice between batch or
streaming. If a batch process is scheduled to run at certain times then we can easily
measure the amount of time the process runs, how much data was processed, and
chain it together with additional processes to handle table maintenance operations.
We do need to think a little differently when it comes to measuring and maintaining
stream processes but many of the features we’ve already looked at, like autocom‐
paction and optimized writes for example, can actually work in both realms. In
Figure 4-2 we can see how with modern systems batch and streaming can converge
with one another and we can focus instead on latency tradeoffs once we depart
from traditional frameworks. By choosing a framework that has a reasonably unified
API minimizing the differences in programming for both batch and streaming use
cases and running it on top of a storage format like Delta Lake that simplifies the
maintenance operations and provides for either method of processing, we wind up
with a more robust yet flexible system that can handle all our data processing tasks
and minimize the need to balance multiple tools and avoid other complications
necessitated by running multiple systems. This makes Delta Lake the ideal storage
solution for streaming workloads. Next we’ll consider some of the specific terminol‐
ogy for stream processing applications and follow it with a review of a few of the
different framework integrations available to use with Delta Lake.
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Figure 4-2. Streaming and batch processes overlap in modern systems.

Streaming Terminology
In many ways streaming processes are quite the same as batch processes with the
difference being mostly one of latency and cadence. This does not mean, however,
that streaming processes don’t come with some of their own lingo. Some of the terms
vary only a little from batch usage, like source and sink, while others don’t really
apply to batch, like checkpoint and watermark. It’s useful to have some working
familiarity with these terms but you can dig into them at a greater depth in Stream
Processing with Apache Flink or Learning Spark.

Source.    A stream processing source is any of a variety of sources of data that can
be treated as an unbounded data set. Sources for data stream processing are varied
and ultimately depend on the nature of the processing task in mind. There are a num‐
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ber of different message queue and pub-sub connectors used across the Spark and
Flink ecosystems as data sources. These include many common favorites like Apache
Kafka, Amazon Kinesis, ActiveMQ, RabbitMQ, Azure Event Hubs, and Google Pub/
Sub. Both systems can also generate streams from files, for example, by monitoring
cloud storage locations for new files. We will see shortly how Delta Lake fits in as a
streaming data source.

Sink.    Stream data processing sinks similarly come in different shapes and forms.
We often see many of the same message queues and pub-sub systems in play but
on the sink side in particular we quite often find some materialization layer like a
key-value store, RDBMS, or cloud storage like AWS S3 or Azure ADLS. Generally
speaking the final destination is usually one from the latter categories and we’ll see
some type of mixture of methods in the middle from origin to destination. Delta
Lake functions extremely well as a sink, especially for managing large volume, high
throughput streaming ingestion processes.

Checkpoint.    Checkpointing is usually an important operation to make sure that you
have implemented in a streaming process. Checkpointing keeps track of the progress
made in processing tasks and is what makes failure recovery possible without restart‐
ing processing from the beginning every time. This is accomplished by keeping
some tracking record of the offsets for the stream as well as any associated stateful
information. In some processing engines, like Flink and Spark, there are built in
mechanisms to make checkpointing operations simpler to use. We refer you to the
respective documentation for usage details.

Let’s consider an example from Spark. When we start a stream writing process and
define a suitable checkpoint location it will in the background create a few directories
at the target location. In this example we find a checkpoint written from a process we
called ‘gold’ and named the directory similarly.

tree -L 1 /…/ckpt/gold/
 
/…/ckpt/gold/
├── __tmp_path_dir
├── commits
├── metadata
├── offsets
└── state

The metadata directory will contain some information about the streaming query
and the state directory will contain snapshots of the state information (if any) related
to the query. The offsets and commits directories track at a micro batch level the
progress of streaming from the source and writes to the sink for the process which for
Delta Lake, as we’ll see more of shortly, amounts to tracking the input or output files
respectively.
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1 To explore watermarks in more detail we suggest the “Event Time and Stateful Processing” section of Spark:
The Definitive Guide.

2 We understand many readers are more familiar with Apache Spark. For an introduction to concepts more
specific to Apache Flink we suggest the Learn Flink page of the documentation.

3 Apache Spark source and sink documentation can be found in the “Structured Streaming Program‐
ming Guide” which is generally seen as the go-to source for all things streaming with Spark: https://
spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Watermark.    Watermarking is a concept of time relative to the records being pro‐
cessed. The topic and usage is somewhat more complicated for our discussion and
we would recommend reviewing the appropriate documentation for usage. For our
limited purposes we can just use a working definition. Basically, a watermark is a
limit on how late data can be accepted during processing. It is most especially used in
conjunction with windowed aggregation operations.1

Apache Flink
Apache Flink is one of the major distributed, in-memory processing engines that
supports both bounded and unbounded data manipulation. Flink supports a number
of predefined and built-in data stream source and sink connectors.2 On the data
source side we see many message queues and pub-sub connectors supported such
as RabbitMQ, Apache Pulsar, and Apache Kafka (see the documentation for more
detailed streaming connector information). While some, like Kafka, are supported
as an output destination, it’s probably most common to instead see something like
writing to file storage or Elasticsearch or even a JDBC connection to a database as the
goal. You can find more information about Flink connectors in their documentation.

With Delta Lake we gain yet another source and destination for Flink but one which
can be critical in multi-tool hybrid ecosystems or simplify logical processing transi‐
tions. For example, with Flink we can focus on event stream processing and then
write directly to a delta table in cloud storage where we can access it for subsequent
processing in Spark. Alternatively, we could reverse this situation entirely and feed a
message queue from records in Delta Lake. A more in-depth review of the connector
including both implementation and architectural details is available as a blog post on
the delta.io website.

Apache Spark
Apache Spark similarly supports a number of input sources and sinks.3 Since Apache
Spark tends to hold more of a place on the large scale ingestion and ETL side we
do see a little bit of a skew in the direction of input sources available rather than
the more event processing centered Flink system. In addition to file based sources
there is a strong native integration with Kafka in Spark as well as several separately
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maintained connector libraries like Azure Event Hubs, Google Pub/Sub Lite, and
Apache Pulsar.

There are still several output sinks available too, but Delta Lake is easily among one of
the largest scale destinations for data with Spark. As we mentioned earlier, Delta Lake
was essentially designed around solving the challenges of large scale stream ingestion
with the limitations of the parquet file format. Largely due in part to the origins of
Delta Lake and the longer history with Apache Spark, much of the details covered
here will be Spark-centric but we should note that many of the concepts described
have corollaries with other frameworks as well.

Delta-rs
The Rust ecosystem also has additional processing engines and libraries of its own
and thanks to the implementation called delta-rs we get further processing options
that can run on Delta Lake. This area is one of the newer sides and has seen some
intensive build-out in recent years. Polars and Datafusion are just a couple of the
additional ways you might use for stream data processing and both of these couple
with delta-rs reasonably well. This is a rapidly developing area we expect to see a lot
more growth in going forward.

One other benefit of the delta-rs implementation is that there is a direct Python inte‐
gration which opens up additional possibilities for data stream processing tasks. This
means that for smaller scale jobs, it is possible to use a Python API (like AWS boto3
for example) for services that otherwise require larger scale frameworks for interac‐
tion causing unneeded overhead. While you may not be able to leverage some of the
features from the frameworks that more naturally support streaming operations you
could also benefit from significant reductions in infrastructure requirements and still
get lightning fast performance.

The net result of the delta-rs implementation is that Delta Lake gives us a format
through which we can simultaneously make use of multiple processing frameworks
and engines without relying on an additional RDBMS and still operate outside of
more Java centered stacks. This means that even working in disparate systems we can
build data applications confidently without sacrificing the built-in benefits we gain
through Delta Lake.

Delta as Source
Much of the original intent in Delta Lake’s design was as a streaming sink that added
the functionality and reliability that was previously found missing in practice. In
particular, Delta Lake simplifies maintenance for processes that tend to have lots of
smaller transactions and files and provides ACID transaction guarantees. Before we
look at that side in more depth though, let’s think about Delta Lake as a streaming
source. By way of the already incremental nature that we’ve seen in the transaction
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log, we have a straightforward source of json files with well-ordered id values. This
means that any engine can use the file id values as offsets in streaming messages
with a complete transaction record of the files added during append operations and
see what new files exist. The inclusion of a flag in the transaction log, dataChange,
helps separate out compaction or other table maintenance events that generate new
files as well but do not need to be sent to downstream consumers. Since the ids are
monotonic this also makes offset tracking simpler so exactly once semantics are still
possible for downstream consumers.

The practical upside of all of this is that with Spark Structured Streaming you can
define the readStream format as “delta” and it will begin by processing all previously
available data from the table or file targeted and then add incremental updates as they
are added. This allows for significant simplification of many processing architectures
like the medallion architecture which we have seen before and will discuss in more
detail later, but for now we should assume that creating additional data refinement
layers becomes a natural operation with significantly reduced overhead costs.

With Spark, the readStream itself defines the operation mode and “delta” is just the
format and the operation proceeds as usual with much of the action taking place
behind the scenes. The approach is somewhat flipped with Flink. There instead you
start by building off of the Delta Source object in a Data Stream class and then you
would use the forContinuousRowData API to begin incremental processing.

## Python
streamingDeltaDf = (
    spark
    .readStream
    .format("delta")
    .option("ignoreDeletes", "true")
    .load("/files/delta/user_events")
    )

Delta as Sink
Many of the features you would want for a streaming sink (like asynchronous com‐
paction operations) were not available or scalable in a way that can support modern,
high-volume streaming ingestion. The availability and increased connectivity of user
activity and devices as well as the rapid growth in the internet of things (IoT) quickly
accelerated the growth of large-scale streaming data sources. One of the most critical
problems then comes in answering the question of “how can I efficiently and reliably
capture all of the data?”

Many of the features of Delta Lake are there specifically to answer this problem.
The way actions are committed to the transaction log, for example, fits naturally
in the context of a stream processing engine where you are tracking the progress
of the stream against the source and ensuring that only completed transactions are
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committed to the log while corrupted files are not, allows you to make sure that you
are actually capturing all of the source data with some reliability guarantees. The
metrics produced and emitted to the delta log helps you to analyze the consistency
(or variability) of the stream process with counts of rows and files added during each
transaction.

Most large-scale stream processing happens in “micro-batches”, which in essence are
smaller scale transactions of similar larger batch processes. The result of which is
that we may see many write operations coming from a stream processing engine as
it captures the data in flight. When this processing is happening in an “always-on”
streaming process it can become difficult to manage other aspects of the data ecosys‐
tem like running maintenance operations, backfilling, or modifying historical data.
Table utility commands like optimize and the ability to interact with the delta log
from multiple processes in the environment mean that on the one hand much of
this was considered beforehand and because of the incremental nature we’re able to
interrupt these processes more easily in a predictable way. On the other hand we
might still have to think a little more often about what kinds of combinations of these
operations might occasionally produce conflicts we wish to avoid. Refer to the section
on concurrency control in Chapter 7 for more details.

The medallion architecture with Delta Lake and Apache Spark in particular, which we
will cover in depth in Chapter 11, becomes something of a middle ground where we
see Delta Lake as both a streaming sink and a streaming source working in tandem.
This actually eliminates the need for additional infrastructure in many cases and
simplifies the overall architecture while still providing mechanisms for low-latency,
high-throughput stream processing while preserving clean data engineering practi‐
ces.

Writing a streaming DataFrame object to Delta Lake is straightforward, requiring
only the format specification and a directory location through the writeStream
method.

## Python
(streamingDeltaDf
.writeStream
.format("delta")
.outputMode(“append”)
.start("/<delta_path>/")
)

Similarly you can chain together a readStream definition (similarly formatted)
together with a writeStream definition to set up a whole input-transformation-output
flow (transformation code omitted here for brevity).

## Python
(spark
.readStream
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.format("delta")

.load("/files/delta/user_events")
…
<other transformation logic>
…
.writeStream
.format("delta")
.outputMode(“append”)
.start("/<delta_path>/")
)

Delta streaming options
Now that we’ve discussed how streaming in and out of Delta Lake works conceptu‐
ally, let’s delve into some of the more technical side of the options we’ll ultimately
use in practice and a bit of background on instances where you may wish to modify
them. We’ll start by taking a look at ways we might limit the input rate and, in
particular, how we can leverage that in conjunction with some of the functionality
we get in Apache Spark. After that we’ll delve into some cases where we might want
to skip some transactions. Lastly, we’ll follow up by considering a few aspects of the
relation between time and our processing job.

Limit the Input Rate
When we’re talking about stream processing we generally have to find the balance
in the tradeoffs between three things: accuracy, latency, and cost. We generally don’t
want to forsake anything on the side of accuracy and so this usually comes down to a
tradeoff between just latency and cost, i.e. we can either accept higher costs and scale
up our resources to process data as fast as possible or we can limit the size and accept
longer turnaround times on our data processing. Often this is largely under control
of the stream processing engine, but we have two additional options with Delta Lake
that allow us some additional control on the size of micro batches.

maxFilesPerTrigger
This sets the limit of how many new files will be considered in every micro-
batch. The default value is 1000.

maxBytesPerTrigger
Sets an approximate limit of how much data gets processed in each micro-batch.
This option sets a “soft max”, meaning that a micro-batch processes approxi‐
mately this amount of data but can process more when the smallest input unit
is larger than this limit. In other words, this size setting operates more like a
threshold value that needs to be exceeded, whether with one file or many files,
however many files it takes to get past this threshold it will use that many files,
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kind of like a dynamic setting for the number of files for the microbatch that uses
an approximate size.

These two settings can be balanced with the use of triggers in Structured Streaming
to either increase or reduce the amount of data being processed in each microbatch.
You can use these settings, for example, to lower the size of compute required for
processing or to tailor the job for the expected file sizes you will be working with.
If you use Trigger.Once for your streaming, this option is ignored. This is not set
by default. You can actually use both maxBytesPerTrigger and maxFilesPerTrigger for
the same streaming query. What happens then is the micro-batch will just run until
either limit is reached.

We want to note here that it’s possible to set a shorter logRetention‐
Duration with a longer trigger or job scheduling interval in such a
way that older transactions can be skipped if cleanup occurs. Since
it has no knowledge of what came prior processing will begin at
the earliest available transaction in the log which means data can
be skipped in the processing. A simple example where this could
occur is where the logRetentionDuration is set to, say, a day or two,
but a processing job intending to pick up the incremental changes
is only run weekly. Since any vacuum operation in the intervening
period would remove some of the older versions of the files this
will result in those changes not being propagated through the next
run.

Ignore Updates or Deletes
So far in talking about streaming with Delta Lake, there’s something that we’ve not
really discussed that we really ought to. In earlier chapters we’ve seen how some of
the features of Delta Lake improve the ease of performing CRUD operations, most
notably those of updates and deletes. What we should call out here is that by default
when streaming from Delta Lake it assumes we are streaming from an append-only
type of source, that is, that the incremental changes that are happening are only the
addition of new files. The question then becomes “what happens if I have update or
delete operations in the stream source?”

To put it simply, the Spark readStream operation will fail, at least with the default
settings. This is because as a stream source we only expect to receive new files and we
must specify how to handle files that come from changes or deletions. This is usually
fine for large scale ingestion tables or receiving change data capture (CDC) records
because these won’t typically be subject to other types of operations. There are two
ways you can deal with these situations. The hard way is to delete the output and
checkpoint and restart the stream from the beginning. The easier way is to leverage
the ignoreDeletes or ignoreChanges options, the two of which have rather different
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behavior despite the similarity in naming. The biggest caveat is that when using
either setting you will have to manually track and make changes downstream as we’ll
explain shortly.

The ignoreDeletes Setting

The ignoreDeletes setting does exactly what it sounds like it does, that is, it ignores
delete operations as it comes across them if a new file is not created. The reason this
matters is that if you delete an upstream file, those changes will not be propagated to
downstream destinations, but we can use this setting to avoid failing the stream pro‐
cessing job and still support important delete operations like, for example, General
Data Protection Regulation (GDPR) right to be forgotten compliance where we need
to purge individual user data. The catch is that the data would need to be partitioned
by the same values we filter on for the delete operation so there are no remnants that
would create a new file. This means that the same delete operations would need to be
run across potentially several tables but we can ignore these small delete operations in
the stream process and continue as normal leaving the downstream delete operations
for a separate process.

The ignoreChanges Setting

The ignoreChanges setting actually behaves a bit differently than ignoreDeletes
does. Rather than skipping operations which are only removing files, ignoreChanges
allows new files that result from changes to come through as though they are new
files. This means that if we update some records within some particular file or only
delete a few records from a file so that a new version of the file is created, then the
new version of the file is now interpreted as being a new file when propagated down‐
stream. This helps to make sure we have the freshest version of our data available,
however, it is important to understand the impact of this to avoid data duplication.
What we then need in these cases is to ensure that we can handle duplicate records
either through merge logic or otherwise differentiating the data by inclusion of
additional timekeeping information (i.e. add a version_as_of timestamp or similar).
We’ve found that under many types of change operations the majority of the records
will be reprocessed without changes so merging or deduplication is generally the
preferred path to take.

Example
Let’s consider an example. Suppose you have a Delta Lake table called user_events
withdate, user_email, and action columns and it is partitioned by the date column.
Let’s also suppose that we are using the user_events table as a streaming source for a
step in our larger pipeline process and that we need to delete data from it due to a
GDPR related request.
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When you delete at a partition boundary (that is, the WHERE clause of the query
filters data on a partition column), the files are already in directories based on those
values so the delete just drops any of those files from the table metadata.

So if you just want to delete data from some entire partitions aligning to specific
dates, you can add the ignoreDeletes option to the read stream like this:

## Python
streamingDeltaDf = (
    spark
    .readStream
    .format("delta")
    .option("ignoreDeletes", "true")
    .load("/files/delta/user_events")
    )

If you want to delete data based on a non-partition column like user_email instead
then you will need to use the ignoreChanges option instead like this:

## Python
streamingDeltaDf = (
    spark
    .readStream
    .format("delta")
    .option("ignoreChanges", "true")
    .load("/files/delta/user_events")
    )

In a similar way, if you update records against a non-partition column like user_email
a new file gets created containing the changed records and any other records from the
original file that were unchanged. With ignoreChanges set this file will be seen by the
readStream query and so you will need to include additional logic against this stream
to avoid duplicate data making its way into the output for this process.

Initial Processing Position
When you start a streaming process with a Delta Lake source the default behavior
will be to start with the earliest version of the table and then incrementally process
through until the most recent version. There are going to be times, of course, where
we don’t actually want to start with the earliest version, like when we need to delete
a checkpoint for the streaming process and restart from some point in the middle
or even the most recent point available. Thanks again to the transaction log we can
actually specify this starting point to keep from having to reprocess everything from
the beginning of the log similar to how checkpointing allows the stream to recover
from a specific point.
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What we can do here is define an initial position to begin processing and we can do
it in one of two ways.4 The first is to specify the specific version from which we want
to start processing and the second is to specify the time from which we want to start
processing. These options are available via startingVersion and startingTimestamp.

Specifying the startingVersion does pretty much what you might expect of it. Given
a particular version from the transaction log the files that were committed for that
version will be the first data we begin processing and it will continue from there. In
this way all table changes starting from this version (inclusive) will be read by the
streaming source. You can review the version parameter from the transaction logs
to identify which specific version you might need or you can alternatively specify
“latest” to get only the latest changes.

When using Apache Spark this is easiest by checking commit
versions from the version column of the DESCRIBE HISTORY
command output in the SQL context.

Similarly we can specify a startingTimestamp option for a more temporal approach.
With the timestamp option we actually get a couple of slightly varying behaviors.
If the given timestamp exactly matches a commit it will include those files for
processing, otherwise the behavior is to process only files from versions occurring
after that point in time. One particularly helpful feature here is that it does not strictly
require a fully formatted timestamp string, we can also use a similar date string which
can be interpreted for us.This means our startingTimestamp parameter should look
like either :

• a timestamp string, e.g., “2023-03-23T00:00:00.000Z”•
• a date string, e.g., “2023-03-23”.•

Unlike some of our other settings, we cannot use both options simultaneously here.
You have to choose one or the other. If this setting is added to an existing streaming
query with a checkpoint already defined then they will both be ignored as they only
apply when starting a new query.

Another thing you will want to note is that even though you can start from any
specified place in the source using these options, the schema will reflect the latest
available version. This means that incorrect values or failures can occur if there is
an incompatible schema change between the specified starting point and the current
version.
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Considering our user_events dataset again, suppose you want to read changes occur‐
ring since version 5. Then you would write something like this:

## Python
(spark
.readStream
.format("delta")
.option("startingVersion", "5")
.load("/files/delta/user_events")
)

Alternatively, if you wanted to read changes based on a date instead, say occurring
since 2023-04-18, use something like this instead:

## Python
(spark
.readStream
.format("delta")
.option("startingTimestamp", "2023-04-18")
.load("/files/delta/user_events")
)                        

Initial Snapshot with EventTimeOrder
The default ordering when using Delta Lake as a streaming source is based on the
modification date of the files. We have also seen that when we are initially running
a query it will naturally run until we are caught up to the current state of the
table. We call this version of the table, the one covering the starting point through
to the current state, the initial snapshot at the beginning of a streaming query. On
Databricks we get an additional option for interpreting time for this initial snapshot.
We may want to consider whether in the case of our data set this default ordering
based on the modification time is correct or if there is an event time field we can
leverage in the data set that might simplify the ordering of the data.

A timestamp associated with when a record was last modified (seen) doesn’t necessar‐
ily align with the time an event happened. You could think of IoT device data that
gets delivered in bursts at varying intervals. This means that if you are relying on
a last_modified timestamp column, or something similar to that, records can get
processed out of order and this could lead to records being dropped as late events by
the watermark. You can avoid this data drop issue by enabling the option withEvent
TimeOrder which will prefer the event time over the modification time. This is an
example for setting the option on a readStream with an associated watermark option
on the event_time column.

## Python
(spark
.readStream
.format("delta")
.option("withEventTimeOrder", "true")
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.load("/files/delta/user_events")

.withWatermark("event_time", "10 seconds")
)

When the option is enabled the initial snapshot is analyzed to get a total time
range and then divided into buckets with each bucket getting processed in turn as a
microbatch which might result in some added shuffle operations. You can still use the
maxFilesPerTrigger or maxBytesPerTrigger options to throttle the processing rate.

There are several callouts we want to make sure you’re aware of related to this
situation:

• The data drop issue only happens when the initial Delta snapshot of a stateful•
streaming query is processed in the default order.

• withEventTimeOrder is another of those settings that only takes effect at the•
beginning of a streaming query so it cannot be changed after the query is started
and the initial snapshot is still being processed. If you want to modify the
withEventTimeOrder setting, you must delete the checkpoint and make use of
the initial processing position options to proceed.

• This option became available in Delta Lake 1.2.1. If you are running a stream•
query with withEventTimeOrder enabled, you cannot downgrade it to a version
which doesn’t support this feature until the initial snapshot processing is com‐
pleted. If you need to downgrade versions, you can either wait for the initial
snapshot to finish, or delete the checkpoint and restart the query.

• There are a few rarer scenarios where you cannot use withEventTimeOrder:•
— If the event time column is a generated column and there are non-projection—

transformations between the Delta source and watermark.
— There is a watermark that with multiple Delta sources in the stream query.—

• Due to the potential for increased shuffle operations the performance of the•
processing for the initial snapshot may be impacted.

Using the event time ordering triggers a scan of the initial snapshot to find the
corresponding event time range for each micro batch. This suggests that for better
performance we want to be sure that our event time column is among the columns
we collect statistics for. This way our query can take advantage of data skipping and
we get faster filter action.You can increase the performance of the processing in cases
where it makes sense to partition the data in relation to the event time column.
Performance metrics should indicate how many files are being referenced in each
micro batch.
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Setting spark.databricks.delta.withEventTimeOrder.enabled

true can be set as a cluster level Spark configuration but also be
aware that doing this will make it apply it to all streaming queries
that run on the cluster.

Advanced Usage with Apache Spark
Much of the functionality we’ve covered to this point can be applied from more
than one of the frameworks listed earlier. Here we turn our attention to a couple of
common cases we’ve encountered while using Apache Spark specifically. These are
cases where leveraging features of the framework can prevent us from using some of
the built in features in Delta Lake directly.

Idempotent Stream Writes
Much of the previous discussion is centered around the idea of running a processing
task from a single source to a single destination. In the real world, however, we may
not always have neat and simple pipelines like this and instead find ourselves building
out pipelines using multiple sources writing to multiple destinations which may also
wind up overlapping. With the transaction log and atomic commit behavior we can
support multiple writers to a single Delta Lake destination from a functional perspec‐
tive as we’ve already considered. How can we apply this in our stream processing
pipelines though?

In Apache Spark we have the method forEachBatch available on a structured stream‐
ing DataFrame that allows us to define more customized logic for each stream micro
batch. This is the typical method we would use to support writing a single stream
source to multiple destinations. The problem we encounter then is that if there are,
say, two different destinations and the transaction fails in writing to the second
destination then we have a somewhat problematic scenario where the processing state
of each of the destinations is out of sync. More specifically, since the first write was
completed and the second failed, when the stream processing job is restarted it will
consider the same offsets from the last run since it did not complete successfully.

Consider this example where we have a sourceDf DataFrame and we want to process
it in batches to two different destinations. We define a function that takes an input
DataFrame and just uses normal Spark operations to write out each microbatch.
Then we can apply that function using the foreachBatch method available from the
writeStream method.

## Python
sourceDf = ... # Streaming source DataFrame
 
# Define a function writing to two destinations
def writeToDeltaLakeTables(batch_df):
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    # location 1
    (batch_df
    .write
    .format(“delta”)
    .save("/<delta_path_1>/")
    )
    # location 2
    (batch_df
    .write
    .format(“delta”)
    .save("/<delta_path_2>/")
    )
 
# Apply the function against the micro-batches using ‘foreachBatch’
(sourceDf
.writeStream
.format("delta")
.queryName("Unclear status stream")
.foreachBatch(writeToDeltaLakeTables)
.start()
)

Now suppose an error occurs after writing to the first location but before the second
completes. Since the transaction failed we know the second table won’t have anything
committed to the log, but in the first table the transaction was successful. When
we restart the job it will start at the same point and rerun the entire function for
that microbatch which can result in duplicated data being written to the first table.
Thankfully Delta Lake has something available to help us out in this case by allowing
us to specify more granular transaction tracking.

Idempotent writes
Let’s suppose that we are leveraging foreachBatch from a streaming source and are
writing to just two destinations. What we would like to do is take the structure of the
foreachBatch transaction and combine it with some nifty Delta Lake functionality to
make sure we commit the micro batch transaction across all the tables without wind‐
ing up with duplicate transactions in some of the tables (i.e., we want idempotent
writes to the tables). We have two options we can use to help get to this state.

txnAppId

This should be a unique string identifier and acts as an application id that you
can pass for each DataFrame write operation. This identifies the source for each
write. You can use a streaming query id or some other meaningful name of your
choice as txnAppId.

txnVersion

This is a monotonically increasing number that acts as a transaction version and
functionally becomes the offset identifier for a writeStream query.

Advanced Usage with Apache Spark | 95



By including both of these options we create a unique source and offset tracking at
the write level, even inside a foreachBatch operation writing to multiple destinations.
This allows for the detection at a table level of duplicate write attempts that can
be ignored. This means that if a write is interrupted during processing just one
of multiple table destinations we can continue the processing without duplicating
write operations to tables for which the transaction was already successful. When
the stream restarts from the checkpoint it will start again with the same micro batch
but then in the foreachBatch, with the write operations now being checked at a
table level of granularity, we only write to the table or tables which were not able to
complete successfully before because we will have the same txnAppId and txnVersion
identifiers.

The application ID (txnAppId) can be any user-generated unique
string and does not have to be related to the stream ID so you
can use this to more functionally describe the application perform‐
ing the operation or identifying the source of the data. The same
DataFrameWriter options can actually be used to achieve similar
idempotent writes in batch processing as well.

In the case you want to restart processing from a source and delete/
recreate the streaming checkpoint you must provide a new appId as
well before restarting the query. If you don’t then all of the writes
from the restarted query will be ignored because it will contain
the same txnAppId and the batch id values would restart so the
destination table will see them as duplicate transactions.

If we wanted to update the function from our earlier example to write to multiple
locations with idempotency using these options we can specify the options for each
destination like this:

## Python
app_id = ... # A unique string used as an application ID.
 
def writeToDeltaLakeTableIdempotent(batch_df, batch_id):
    # location 1
    (batch_df
    .write
    .format(“delta”)
    .option("txnVersion", batch_id)
    .option("txnAppId", app_id)
    .save("/<delta_path>/")
    )
    # location 2
    (batch_df
    .write
    .format(“delta”)
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    .option("txnVersion", batch_id)
    .option("txnAppId", app_id)
    .save("/<delta_path>/")
    )

Merge
There is another common case where we tend to see forEachBatch used for stream
processing. Think about some of the limitations we have seen above where we might
allow large amounts of unchanged records to be reprocessed through the pipeline, or
where we might otherwise want more advanced matching and transformation logic
like processing CDC records. In order to update values we need to merge changes
into an existing table rather than simply append the information. The bad news
is that the default behavior in streaming kind of requires us to use append type
behaviors, unless we leverage forEachBatch that is.

We looked at the merge operation earlier in Chapter 3 and saw that it allows us to use
matching criteria to update or delete existing records and append others which don’t
match the criteria, that is, we can perform upsert operations. Since forEachBatch lets
us treat each micro batch like a regular DataFrame then at the micro batch level we
can actually perform these upsert operations with Delta Lake. You can upsert data
from a source table, view, or DataFrame into a target Delta table by using the MERGE
SQL operation or its corollary for the Scala, Java, and Python Delta Lake API. It even
supports extended syntax beyond the SQL standards to facilitate advanced use cases.

A merge operation on Delta Lake typically requires two passes over the source data.
If you use nondeterministic functions like current_timestamp or random in a source
DataFrame then multiple passes on the source data can produce different values in
rows causing incorrect results. You can avoid this by using more concrete functions
or values for columns or writing out results to an intermediate table. Caching the
source data may help either because a cache invalidation can cause the source data
to be partially or completely reprocessed resulting in the same kind of value changes
(for example when a cluster loses some of its executors when scaling down). We’ve
seen cases where this can fail in surprising ways when trying to do something like
using a salt column to restructure DataFrame partitioning based on random number
generation (e.g. Spark cannot locate a shuffle partition on disk because the random
prefix is different than expected on a retried run). The multiple passes for merge
operations increase the possibility of this happening.

Let’s consider an example of using merge operations in a stream using foreachBatch
to update the most recent daily retail transaction summaries for a set of customers.
In this case we will match on a customer id value and include the transaction date,
number of items and dollar amount. In practice what we do to use the mergeBuilder
API here is build a function to handle the logic for our streaming DataFrame. Inside
the function we’ll provide the customer id as a matching criteria for the target table
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and our changes source, and then allow for a delete mechanism and otherwise update
existing customers or add new ones as they appear.5 The flow of the operations in
the function is to specify what to merge, with arguments for the matching conditions,
and which actions we want to take when a record is matched or not (for which we
can add some additional conditions).

## Python
from delta.tables import *
 
def upsertToDelta(microBatchDf, batchId):
    Target_table = "retail_db.transactions_silver"
    deltaTable = DeltaTable.forName(spark, target_table)
    (deltaTable.alias("dt")
    .merge(source=microBatchDf.alias("sdf"),
          condition="sdf.t_id = dt.t_id")
    .whenMatchedDelete(condition="sdf.operation='DELETE'")
    .whenMatchedUpdate(set={
          "t_id": "sdf.t_id",
          "transaction_date": "sdf.transaction_date",
          "item_count": "sdf.item_count",
          "amount": "sdf.amount"
          })
    .whenNotMatchedInsert(values={
          "t_id": "sdf.t_id",
          "transaction_date": "sdf.transaction_date",
          "item_count": "sdf.item_count",
          "amount": "sdf.amount"
          })
    .execute())

The function body itself is similar to how we specify merge logic with regular batch
processes already. The only real difference in this case is we will run the merge
operation for every received batch rather than an entire source all at once. Now
with our function already defined we can read in a stream of changes and apply our
customized merge logic with the foreachBatch in Spark and write it back out to
another table.

## Python
changesStream = ... # Streaming DataFrame with CDC records
 
# Write the output of a streaming aggregation query into Delta table
(changesStream
.writeStream
.format("delta")
.queryName("Summaries Silver Pipeline")
.foreachBatch(upsertToDelta)
.outputMode("update")
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.start()
)

So each micro-batch of the changes stream will have the merge logic applied to it and
be written to the destination table or even multiple tables like we did in the example
for idempotent writes.

Delta Lake Performance Metrics
One of the often overlooked but very helpful things to have for any data processing
pipeline is insight into the operations that are taking place. Having metrics that
help us to understand the speed and scale at which processing is taking place can
be valuable information for estimating costs, capacity planning, or troubleshooting
when issues arise. We’ve already seen a couple of cases where we are receiving metrics
information when streaming with Delta Lake but here we’ll look more carefully at
what we are actually receiving.

Metrics
As we’ve seen there are cases where we want to manually set starting and ending
boundary points for processing with Delta Lake and this is generally aligned to
versions or timestamps. Within those boundaries we can have differing numbers of
files and so forth and one of the concepts that we’ve seen important to streaming
processes in particular is tracking the offsets, or the progress, through those files.
In the metrics reported out for Spark Structured Streaming we see several details
tracking these offsets.

When running the process on Databricks as well there are some additional metrics
which help to track backpressure, i.e. how much outstanding work there is to be
done at the current point in time. The performance metrics we see get output are
numInputRows, inputRowsPerSecond, and processedRowsPerSecond. The backpres‐
sure metrics are numBytesOutstanding and numFilesOutstanding. These metrics are
fairly self explanatory by design so we’ll not explore each individually.

Comparing the inputRowsPerSecond metric with the processe‐
dRowsPerSecond metric provides a ratio that can be used to mea‐
sure relative performance and might indicate if the job should have
more resources allocated or if triggers should be throttled down a
bit.

Custom Metrics
For both Apache Flink and Apache Spark, there are also custom metrics options you
can use to extend the metrics information tracked in your application. One method
we’ve seen using this concept was to send additional custom metrics information
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from inside a forEachBatch operation in Spark. See the documentation for each
processing framework as needed to pursue this option. This provides the highest
degree of customization but also the most manual effort.

Auto Loader and Delta Live Tables
The majority of our focus is on everything freely available in the Delta Lake open
source project, however, there are a couple of major topics only available in Data‐
bricks that rely on or frequently work in conjunction with Delta Lake that deserve
mention. As the creators of Delta Lake and Apache Spark

Autoloader
Databricks has a somewhat unique Spark structured streaming source known as Auto
Loader but is really better thought of as just the cloudFiles source. On the whole the
cloudFiles source is more of a streaming source definition in Structured Streaming
on Databricks, but it has rapidly become an easier entrypoint for streaming for many
organizations where Delta Lake is commonly the destination sink. This is partly
because it provides a natural way to incrementalize batch processes to integrate some
of the benefits, like offset tracking, that are components of stream processing.

The cloudFiles source actually has two different methods of operation, one is directly
running file listing operations on a storage location and the other is listening on a
notifications queue tied to a storage location. Whichever method is used the utility
should be quickly apparent that this is a scalable and efficient mechanism for regular
ingestion of files from cloud storage as the offsets it uses for tracking progress are the
actual file names in the specified source directories. Refer to the section on Delta Live
Tables for an example of the most common usage.

One fairly standard application of Auto Loader is using it as a part of the medallion
architecture design with a process ingesting files and feeding the data into Delta
Lake tables with additional levels of transformation, enrichment, and aggregation
up to gold layer aggregate data tables. Quite commonly this is done with additional
data layer processing taking place with Delta Lake as both the source and the sink
of streaming processes which provides low latency, high throughput, end to end
data transformation pipelines. This process has become somewhat of a standard for
file based ingestion and has eliminated some need for more complicated lambda
architecture based processes, so much so that Databricks also built a framework
largely centered around this approach.
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Delta Live Tables

A declarative framework
Combining incremental ingestion, streamlined ETL, and automated data quality
processes like expectations, Databricks offers a data engineering pipeline framework
running on top of Delta Lake called Delta Live Tables (DLT). It serves to simplify
building pipelines like those we just described in investigating the cloudFiles source,
which actually explains the main reason for including it here in our discussion about
streaming with Delta Lake, that is, it is a product built around Delta Lake that
captures some of the key principles noted throughout this guide in an easy to manage
framework.

Using Delta Live Tables
Rather than building out a processing pipeline piece by piece, the declarative frame‐
work allows you to simply define some tables and views with less syntax than, for
example, many of the features we discussed by automating many of the best practices
commonly used across the field. Some of the things that it will manage on your behalf
include compute resources, data quality monitoring, processing pipeline health, and
optimized task orchestration.

DLT offers static tables, streaming tables, views and materialized views to chain
together many otherwise more complicated tasks. On the streaming side we see Auto
Loader as a prominent and common initial source feeding downstream incremental
processes across Delta Lake backed tables. Here is some example pipeline code based
on examples in the documentation.

## Python
import dlt
 
@dlt.table
def autoloader_dlt_bronze():
    return (
        spark
        .readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "json")
        .load("<data path>")
    )
 
@dlt.table
def delta_dlt_silver():
    return (
        dlt
        .read_stream("autoloader_dlt_bronze")
        …
        <transformation logic>
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        …
    )
 
@dlt.table
def live_delta_gold():
    return (
        dlt
        .read("delta_dlt_silver")
        …
        <aggregation logic>
        …
    )

Since the initial source is a streaming process the silver and gold tables there are
also incrementally processed. One of the advantages we gain for streaming sources
specifically is simplification. By not having to define checkpoint locations or pro‐
grammatically create table entries in a metastore we can build out pipelines with a
reduced level of effort . In short, DLT gives us many of the same benefits of building
data pipelines on top of Delta Lake but abstracts away many of the details making it
simpler and easier to use.

Change Data Feed
Earlier we looked at what it might look like to integrate Change Data Capture (CDC)
data into a streaming Delta Lake pipeline. Does Delta Lake have any options for
supporting this type of feed? The short answer is: yes. To get around to the longer
answer, let’s first make sure we’re on level terms of understanding.

By this point, we have worked through quite a few examples of using Delta Lake and
we’ve seen that basically we have just 3 major operations for any particular row of
data: inserting a record, updating a record, or deleting a record. This is similar to
pretty much any other data system. So where does CDC come into play then exactly?

As defined by Joe Reis and Matt Housley in Fundamentals of Data Engineering
“change data capture (CDC) is a method for extracting each change event (insert,
update, delete) that occurs in a database. CDC is frequently leveraged to replicate
between databases in near real time or create an event stream for downstream pro‐
cessing.” Or, as they put it more simply, “CDC… is the process of ingesting changes
from a source database system.”6

Bringing this back around to our initial inquiry, tracking changes is supported in
Delta Lake via a feature called Change Data Feed (CDF). What CDF does is it lets
you track the changes to a Delta Lake table. Once it is enabled you get all of the
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changes to the table as they occur. Updates, merges, and deletes will be put into a new
_change_data folder while append operations already have their own entries in the
table history so they don’t require additional files. Through this tracking we can read
the combined operations as a feed of changes from the table to use downstream. The
changes will have the required row data with some additional metadata showing the
change type.

This feature is available in Delta Lake 2.0.0 and above. As of writ‐
ing, this feature is in experimental support mode.
Levels of support for using Change Data Feed on tables with col‐
umn mapping vary by the version you are using.

• Versions <= 2.0 do not support streaming or batch reads on•
change data feed on tables that have column mapping enabled.

• For version 2.1, only batch reads are supported for tables•
with column mapping enabled. This version also requires that
there are no non-additive schema changes (no renaming or
reordering).

• For version 2.2, both batch and streaming reads are supported•
on change data feeds from tables with column mapping
enabled as long as there still are no non-additive schema
changes.

• Versions >= 2.3 batch reads on change data feed for tables•
with column mapping enabled can now support non-additive
schema changes. It uses the schema of the ending version
used in the query rather than the latest version of the table
available. You can still encounter failures in the case where the
version range specified spans a non-additive schema change.

Using Change Data Feed
While it is ultimately up to you whether or not to leverage the CDF feature in
building out a data pipeline, there are some common use cases where you can make
good use of it to simplify or rethink the way you are handling some processing tasks.
Here are a few examples of way you might think about leveraging it:

Curating Downstream Tables
You can improve the performance of downstream Delta Lake tables by process‐
ing only row-level changes following initial operations to the source table to
simplify ETL and ELT operations because it provides a reduction in logical
complexity. This happens because you will already know how a record is being
changed before checking against its current state.
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Propagating Changes
You can send a change data feed to downstream systems such as another stream‐
ing sink like Kafka or to some other RDBMS that can use it to incrementally
process in later stages of data pipelines.

Creating an Audit Trail
You could also capture the change data feed as a Delta table. This could provide
perpetual storage and efficient query capability to see all changes over time,
including when deletes occur and what updates were made. This could be useful
for tracking changes across reference tables over time or security auditing of
sensitive data.

We should also note that using CDF may not necessarily add any additional storage.
Once enabled what we actually find is that there is no significant impact in processing
overhead. The size of change records is pretty small and in most cases is much
smaller than that actual data files written during change operations This means
there’s very little performance implication for enabling the feature.

Change data for operations is located in the _change_data folder under the Delta
table directory similar to the transaction log. Simple operations, like appending files
or deleting whole partitions, are much simpler than other types of changes. When
the changes are of this simpler type Delta Lake detects it can efficiently compute the
change data feed directly from the transaction log and these records may be skipped
altogether in the folder. Since these operations are often among the most common
this strongly aids in reducing overhead.

Since it is not part of the current version of table data the files in
the _change_data folder follow the retention policy of the table.
This means it is subject to removal during vacuum operations just
like other transaction log files that fall outside of the retention
policy.

Enabling the Change Feed
On the whole there’s not much you need to do as far as configuring CDF for Delta
Lake.7 The gist of it really is to just turn it on, but doing this is slightly different
depending on whether you are creating a new table or if you are implementing the
feature for an existing one.

For a new table simply set the table property delta.enableChangeDataFeed = true
within the CREATE TABLE command.
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## SQL
CREATE TABLE student (id INT, name STRING, age INT) TBLPROPERTIES (delta.enable
ChangeDataFeed = true)

For an existing table you can instead alter the table properties with the ALTER
TABLE command to set delta.enableChangeDataFeed = true.

## SQL
ALTER TABLE myDeltaTable SET TBLPROPERTIES (delta.enableChangeDataFeed = true)

If you are using Apache Spark you can set this as the default behavior for the
SparkSession object by setting spark.databricks.delta.properties.defaults.enableChan‐
geDataFeed to true.

Reading the Changes Feed
Reading the change feed is similar to most read operations with Delta Lake. The key
difference is that we need to specify in the read that we want the change the feed
itself rather than just the data as it is by setting readChangeFeed to true. Otherwise
the syntax looks pretty similar to setting options for time travel or typical streaming
reads. The behavior between reading the change feed as a batch operation or as a
stream processing operation differs, so we’ll consider each in turn. We won’t actually
use it in our examples but rate limiting with maxFilesPerTrigger or maxBytesPer
Trigger can be applied to versions other than the initial snapshot version. When
used either the entire commit version being read will be rate limited as expected or
the entire commit will be returned when below the threshold.

Specifying Boundaries for Batch Processes.    Since batch operations are a bounded process
we need to tell Delta Lake what bounds we want to use to read the change feed. You
can either provide version numbers or timestamp strings to set both the starting and
ending boundaries.8 The boundaries you set will be inclusive in the queries, that is,
if the final timestamp or version number exactly matches a commit then the changes
from that commit will be included in the change feed. If you want to read the changes
from any particular point all the way up to the latest available changes then only
specify the starting version or timestamp.

When setting boundary points you need to either use an integer to specify a version
or a string in the format yyyy-MM-dd[ HH:mm:ss[.SSS]]for timestamps in a similar
way to how we set time travel options. An error will be thrown letting you know that
the change data feed was not enabled if a timestamp or version you give is lower or
older than any that precede when the change data feed was enabled.

## Python
# version as ints or longs
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(spark.read.format("delta")
  .option("readChangeFeed", "true")
  .option("startingVersion", 0)
  .option("endingVersion", 10)
  .table("myDeltaTable")
)
 
# timestamps as formatted timestamp
(spark.read.format("delta")
  .option("readChangeFeed", "true")
  .option("startingTimestamp", '2023-04-01 05:45:46')
  .option("endingTimestamp", '2023-04-21 12:00:00')
  .table("myDeltaTable")
)
 
# providing only the startingVersion/timestamp
(spark.read.format("delta")
  .option("readChangeFeed", "true")
  .option("startingTimestamp", '2023-04-21 12:00:00.001')
  .table("myDeltaTable")
)
 
 
# similar for a file location
(spark.read.format("delta")
  .option("readChangeFeed", "true")
  .option("startingTimestamp", '2021-04-21 05:45:46')
  .load("/pathToMyDeltaTable")
)

Specifying Boundaries for Streaming Processes.    If we want to use a readStream on the
change feed for a table we can still set a startingVersion or startingTimestamp but
they are more optional than they are in the batch case as if the options are not
provided the stream returns the latest snapshot of the table at the time of streaming as
an INSERT and then all future changes as change data.

Another difference for streaming is that we won’t configure an ending position since
a stream is unbounded and so does not have an ending boundary. Options like
rate limits (maxFilesPerTrigger, maxBytesPerTrigger) and excludeRegex are also
supported when reading change data and so other than that we proceed as we would
normally.

## Python
# providing a starting version
(spark.readStream.format("delta")
  .option("readChangeFeed", "true")
  .option("startingVersion", 0)
  .load("/pathToMyDeltaTable")
)
 
# providing a starting timestamp
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(spark.readStream.format("delta")
  .option("readChangeFeed", "true")
  .option("startingTimestamp", "2021-04-21 05:35:43")
  .load("/pathToMyDeltaTable")
)
 
# not providing either
(spark.readStream.format("delta")
  .option("readChangeFeed", "true")
  .load("/pathToMyDeltaTable")
)

If the specified starting version or timestamp is beyond the latest
found in the table then you will get an error: timestampGreater
ThanLatestCommit. You can avoid this error, which would mean
choosing to receive an empty result set instead, by setting this
option:

## SQL
set spark.databricks.delta.changeDataFeed.timestampOutO
fRange.enabled = true;

If the starting version or timestamp value is in range of what is
found in the table but an ending version or timestamp is out of
bounds you will see with this feature enabled that all available
versions falling within the specified range will be returned.

Schema
At this point you might wonder exactly how the data we are receiving in a change
feed looks as it comes across. You get all of the same columns in your data as before.
This makes sense because otherwise it wouldn’t match up with the schema of the
table. We do, however, get some additional columns so we can understand things like
the change type taking place. We get these three new columns in the data when we
read it as a change feed.

Change Type
The _change_type column is a string type column which, for each row, will
identify if the change taking place is an insert, an update_preimage , an
update_postimage, or a delete operation. In this case the preimage is the
matched value before the update and the postimage is the matched value after the
update.

Commit Version
The _commit_version column is a long integer type column noting the Delta
Lake file/table version from the transaction log that the change belongs to.
When reading the change feed as a batch process it will be at or in between the
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boundaries defined for the query. When read as a stream it will be at or greater
than the starting version and continue to increase over time.

Commit Timestamp
The _commit_timestamp column is a timestamp type column (formatted as
yyyy-MM-dd[ HH:mm:ss[.SSS]]) noting the time at which the version in _com
mit_version was created and committed to the log.

As an example, suppose we have the following example where there was a (fictional)
discrepancy in the people10m dataset. We can update the errant record and when we
view the change feed we will see the original record values denoted as the preimage
and the updated values denoted as the postimage. We’ll update the set on the mistak‐
enly input name and correct the name and the gender of the individual. Afterwards
we’ll view a subset of the table highlighting the before and after change feed records
to see what it looks like. We can also note that it captures both the version and
timestamp from the commit at the same time.

## SQL
UPDATE
people10m
SET
gender = 'F',
firstName='Leah'
WHERE
firstName='Leo'
and lastName='Conkay';

## Python
(
  spark
  .read.format("delta")
  .option("readChangeFeed", "true")
  .option("startingVersion", 5)
  .option("endingVersion", 5)
  .table("tristen.people10m")
  .select(
      col("firstName"),
      col("lastName"),
      col("gender"),
      col("_change_type"),
      col("_commit_version"))
  ).show()

+---------+--------+------+----------------+---------------+-------------------+
|firstName|lastName|gender|    _change_type|_commit_version|  _commit_timestamp|
+---------+--------+------+----------------+---------------+-------------------+
|      Leo|  Conkay|     M| update_preimage|              5|2023-04-05 13:14:40|
|     Leah|  Conkay|     F|update_postimage|              5|2023-04-05 13:14:40|
+---------+--------+------+----------------+---------------+-------------------+
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Additional Thoughts
Here we have built upon many of the concepts covered in previous chapters and seen
how they can be applied across several different kinds of uses. We explored several
fundamental concepts used in stream data processing and how they come into play
with Delta Lake. We indirectly saw how the core streaming functionality (particularly
in Spark) is simplified with the use of a unified API due to the similarity in how it
is used. Then we explored some different options for providing more direct control
over the behavior of streaming reads and writes with Delta Lake. We followed this by
looking a bit at some areas closely related to stream processing with Apache Spark
or on Databricks but are built on top of Delta Lake. We finished by reviewing the
Change Data Feed functionality available in Delta Lake and how we can use it in
streaming or non-streaming applications. We hope this helps to answer many of the
questions or curiosities you might have had about this area of using Delta Lake. After
this we’re going to explore some of the other more advanced features available in
Delta Lake.

Key References
• Spark Definitive Guide•
• Stream Processing with Apache Flink•
• Learning Spark•
• Streaming Systems•
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CHAPTER 5

Architecting Your Lakehouse

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 11th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Successful engineering initiatives begin with proper vision and clear purpose (what
we are doing and why) as well as a solid design and architecture (how we plan
to achieve the vision). Combining a thoughtful plan with the right building blocks
(tools, resources, and engineering capabilities) ensures that the final result reflects the
mission and performs well at scale. Delta Lake provides key building blocks enabling
us to design, construct, test, deploy, and maintain enterprise grade data lakehouses.

The goal of this chapter is more than just offering a collection of ideas, patterns, and
best practices, but rather to act as a field guide. By providing the right information,
reasoning, and mental models, lessons learned here can coalesce into clear blueprints
to use when architecting your own data lakehouse. Whether you are new to the
concept of the lakehouse, unfamiliar with the medallion architecture for incremental
data quality, or if this is your first foray into working with streaming data, we’ll take
this journey together.

What we’ll learn:
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• What is the Lakehouse Architecture?•
• Using Delta Lake as the foundation for implementing the Lakehouse Architec‐•

ture
• The Medallion Architecture•
• Streaming Lakehouse Architecture•

The Lakehouse Architecture
If successful engineering initiatives begin with clear vision and purpose, and our goal
is ultimately to lay the foundation for our own data lakehouses, then we’ll need to
first define what a lakehouse is.

What is a Lakehouse?
“ The Lakehouse is an open data management architecture that combines the flexibil‐
ity, cost-efficiency, and scale of the data lake, with the data management, schema
enforcement, and ACID transactions of the traditional data warehouse. “ - Databricks

There is a lot to unpack from this definition, namely, there are assumptions being
made that all require some hands-on experience, or shared mental models, from both
engineering and data management perspectives. Specifically, the definition assumes
a familiarity with data warehouses and data lakes, as well as the trade-offs people
must make when selecting one technology versus the other. The following section will
cover the pros and cons of each choice, and describe how the lakehouse came to be.

The history and myriad use cases shared across the data warehouse and data lake
should be second nature for anyone who has previously worked in roles spanning the
delivery and consumption spaces. For anyone just setting out on their data journey,
transitioning from data warehousing, or who has only worked with data in a data
lake, this section is also for you.

In order to understand where the lakehouse architecture evolved from, we’ll need to
be able to answer the following:

• If the lakehouse is a hybrid architecture combining the best of the data lake and•
data warehouse, then in doing so, it must be better than the sum of its parts.

• Why does the flexibility, cost-efficiency, and unbounded data scaling, inspired by•
traditional data lakes, matter for all of us today?

• Why do the benefits of the data lake only truly matter when coupled with the•
benefits of schema-enforcement and evolution, ACID transactions, and proper
data management, inspired by traditional data warehouses?
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Learning from Data Warehouses
The data warehouse emerged to fix the issue of data silos within large enterprises
and to simplify business intelligence and analytical decision making. While the data
warehouse exists as a centralized solution to solve structured data problems within
a given data domain, physical limitations within the data warehouse architecture
meant costs would increase proportionally to the size and scale of the data within the
warehouse. The root cause of the physical limitations were due to data being stored
locally (non-distributed) in what is known as a vertically scaling architecture.

While cost is a limiting factor of large scale data warehouses (due to vertical scaling),
the benefits of running the data warehouse can outweigh the higher bills when
compared to operating many independent data silos. Architected with safe data
management, access policies, and the enforcement of rules and standards in mind:
data warehouses are built for consistency first. This means a lot when considering
the correctness of data, which now falls under its own umbrella of data quality. With
support of type-safe, structured data and schema enforcement, the data warehouse
is commonly utilized for foundational business-intelligence and operational data
systems that must provide consistent tables, and clear data definitions.

On the data management front, support for access control, through user and role
based permissions, called grants, enable a secure and rule based system to gate which
users can execute reads (select), writes (insert), updates, and deletes of the data within
the warehouse’s subsequent tables and views.

Outside of cost, issues preventing the data warehouse architecture from scaling to
meet the demands of today, reside in a lack of flexibility supporting various kinds of
workloads including data science and machine learning.

Today missing support for common machine learning and data science workflows,
which require custom data types and formats - supporting unstructured (images),
semi-structured (csv, json), and fully structured data (parquet / orc) - as well as the
ability to easily read entire tables into memory–with efficient file skipping, column
pruning–all without needing to make expensive queries multiple times for iterative
algorithms.

Unfortunately, more data copying introduced silos due to missing support for data
science, which requires data to be stored in the data lake, while supporting analysts
and the business intelligence folks who needed their data to remain in the warehouse.

Learning from Data Lakes
The data lake emerged to store raw (unprocessed) data in a wide variety of formats
(csv, json, orc, text, binary) within a distributed file system; the popular choice at
the time being the Hadoop Distributed File System (HDFS). Utilizing commodity
hardware, the data lake could be utilized to run distributed processing jobs (Map
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Reduce), or be leveraged to act as a staging area for data to be loaded into the data
warehouse. Today, many workloads still follow similar patterns, utilizing cloud based
object stores, or other managed elastic storage and elastic compute to power data
lakes. So how does this fit into the lakehouse story?

The data lake provides a solution for storing raw feeds of data (as files) that can be
processed directly for data science and machine learning use cases, supporting data
formats that are unavailable within the data warehouse. These feeds of data found
another use though being transformed to keep the data warehouse in sync using the
dual-tier data architecture, which is covered in the next section.

The benefits of the data lake are associated with the cost, which is comparatively low
when weighed against data warehouse as well as well general support for file format
flexibility.

The file format flexibility also acts as a double-edged sword. What exists in one
format today, can just as easily shift tomorrow, as the data lake remains schema-less,
allowing anything to be stored inside its filesystem.

On the upside, the separation of storage and compute means that costs remain low,
requiring minimal overhead, until the point where data will be called into action.
Sadly, due to the schema-less nature of the data lake, things don’t always go well when
older datasets are pulled out of storage. Corrupt data is one of the big reasons why the
data lake also coined the name the “Data Swamp”.

Further distancing itself from the data warehouse, the data lake doesn’t support trans‐
actions, operation-level isolation, and as a consequence it lacks support for multiple
simultaneous data producers or consumers sharing the same set of resources in the
data lake. With respect to consistency, it is near impossible to achieve a consistent
state between active readers and writers, or to support multiple access modes, like
what is more common today with batch and streaming jobs operating on the same
physical table.

Understanding that a data lake without rules eventually leads to data instability,
unusable data, and in the worst examples completely “polluted” or “toxic” data lakes,
there emerged this radical idea, “what if you could achieve the best of both worlds?”

The Dual-Tier Data Architecture
The dual-tier architecture is the natural evolution in the relationship between the
data lake and warehouse. Set into your mind an orchestration platform like Airflow.
The reason Airflow is popular rests on the fact that it is difficult to manage consis‐
tency between the data lake and the data warehouse. What if we had a way to manage
both?
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Rather than having a single hop from the operational data system (siloed data) into
the data warehouse (shared), or into the data lake, the dual-tier architecture relied on
extract-tranform-load (ETL) jobs to manage consistency. Consider the following set
of jobs:

1. Write operational data from source database A into the data lake (location a).1.
2. Read, clean, transform the data from (location a) and write the changes to2.

(location b)
3. Read from (location b), joining and normalizing with data from (location c) into3.

a landing zone (location d)
4. Read the data from (location d) and write it into the data warehouse for con‐4.

sumption by the business.

As long as the workflow completes, the data in the data lake will be in sync with the
warehouse, and enables support for unloading or reloading tables to save cost in the
data warehouse.

This makes sense in hindsight.

In order to support direct read access on the data, the data lake is required for sup‐
porting machine learning use cases, while the data warehouse is required to support
the business and analytical processing. However, the added complexity inadvertently
puts a greater burden on data engineers to manage multiple sources of truth, the cost
of maintaining multiple copies of all the same data (once or more in the data lake,
and once in the data warehouse), and the headache of figuring out what data is stale,
where, and why.

If you have ever played the game two truths and a lie, this is the architectural
equivalent but rather than a fun game, the stakes are much higher; this is, after all,
our precious operational data. Two sources of truth, by definition, mean both systems
can be (and probably will be) out of sync, telling their own versions of the truth. This
also means each source of truth is also lying. They just aren’t aware.

So the question is still up in the air. What if you could achieve the best of both worlds
and efficiently combine the data lake and the data warehouse? Well, that is where the
data lakehouse was born.

Lakehouse Architecture
The lakehouse is a hybrid data architecture that combines the best of the data
warehouse with the best of the data lake. Figure 5-1 provides a simple flow of
concepts through the lens of what use cases can be attributed to each of the three data
architectures: the data warehouse, data lake, and the data lakehouse.
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Figure 5-1. The Data Lakehouse provides a common interface for BI and reporting while
ensuring that data science and machine learning workflows are supported in a single,
unified, way.

This new architecture is enabled through an open system design: implementing
similar data structures and data management features to those in a data warehouse,
directly on the kind of low-cost storage used for data lakes.

Merging them into a single system means that data teams can move faster as they
are able to use data without needing to access multiple systems. This dissolves the
boundaries between the data warehouse and data lake, while also providing a single-
source of truth, which is a huge win over the dual-tier architecture, and prevents the
problem of figuring out which side (warehouse or lake) has the correct data, who isn’t
in sync, and all the costly work involved to come up with a straight answer.

The benefits also ensure teams have the most complete and up-to-date data available
for data science, machine learning, and business analytics projects.

Architectural Pillars of the Data Lakehouse

• Transaction Support•
• Schema Enforcement and Governance - audit log and data integrity•
• BI Support through SQL and open interfaces like JDBC•
• Separation between Storage and Compute•
• Open-Standards: Open APIs, and Open Data Formats•
• End to End Streaming•
• Supports Diverse Workloads from traditional SQL to deep learning•
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Foundations with Delta Lake
We just learned about the successful marriage of ideas resulting in the Lakehouse.
A design that isn’t limited in the ways of the data warehouse and benefits from the
high-availability, near boundless-scalability, and cost effective separation of storage
and compute of the data lake.

This section will cover what we gain out of the box with Delta Lake and why it’s the
right tool to power the Lakehouse.

Open-Source on Open-Standards in an Open Ecosystem
Architecting your lakehouse with Delta Lake comes with open-standards and a
commitment to an open-ecosystem focused on open-protocols, common sense, and
standard conventions.

Open File Format
Apache Parquet is the physical file format for the data stored in our Delta tables.
Parquet, being widely supported within the big data community, had already proved
its value with respect to speed and scalability, but it remained difficult to maintain
over time. Parquet on its own doesn’t provide schema-validations or evolution. Nor
does it support column remapping.

The big difference that Delta brings to the table is consistency and column-level guar‐
antees enabling the underlying parquet to survive schema transformations and subtle
changes over time that would leave standard parquet corrupted when processed as a
contiguous collection of data over time.

Parquet is the standard file format for column oriented analytical data. So rather
than implement an internal, proprietary table format and access protocol - the Delta
protocol is freely available to be used by the community to build new tooling and
connectors (which we looked at in Chapter 5) and can be used natively within many
offerings provided by the key cloud service vendors like Amazon, Microsoft, as well
as Starburst, and Databricks.

Self Describing Table Metadata
The metadata for each Delta table is stored alongside the physical table data. This
design eliminates the need to maintain a separate metastore, like the Hive Metastore,
to simply describe a given table. The design decision enables static tables to be copied
more efficiently, and moved using standard file system tools, while also enabling
metadata-only copies of tables to exist as we’ve seen with SHALLOW CLONE in Chapter
7.
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1 UniForm is “coming soon” as of this Early Release

Open Table Specification
Lastly, there is no fear of vendor lock-in; the entire Delta Lake project itself is
provided freely to the entire open-source community through the Linux Foundation
and has a good community around it.

Delta Universal Format (*1UniForm)
UniForm is a new feature introduced in Delta Lake 3.0. UniForm enables reading
Delta in the format needed by an application, improving compatibility and expand‐
ing the ecosystem. Delta UniForm will automatically generate metadata needed for
Apache Iceberg or Apache Hudi, so users don’t have to choose upfront, or do manual
conversions between formats which can be error prone. With UniForm, Delta is
the universal format that works across ecosystems providing interoperability for the
Lakehouse.

Transaction Support
Support for transactions is critical whenever data accuracy and sequential insertion
order is important. Arguably this is required for nearly all production cases. We
should concern ourselves with achieving a minimally high bar at all times. While
transactions mean there are additional checks and balances, for example, if there are
multiple writers making changes to a table there will always be an possibility for
collisions. Understanding the behavior of the distributed Delta transaction protocol
means we know exactly which write should win and how, and can guarantee the
insertion order of data to be exact for reads.

Serializable Writes
Delta provides ACID guarantees for transactions while enabling multiple concurrent
writers using a technique called write serialization. When new rows are simply being
appended to the table, like with INSERT operations, the table metadata doesn’t need
to be read before a commit can occur. However, if the table is being modified in
a more complex way, for example, if rows are being deleted, or updated, then the
table metadata will be read before the write operation can be committed. This process
ensures that before any changes are committed, the changes don’t collide which could
potentially corrupt the true sequential insert and operation order on a Delta table.
Rather than risking corruption, collisions result in a specific set of exceptions raised
by the type of concurrent modification.
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Snapshot Isolation for Reads
Processes reading a given Delta table are insulated from the complexities of multiple
simultaneous writers and are guaranteed to read a consistent snapshot of the Delta
table in exact serial order.

Support for Incremental Processing
Each table contains a single serial history of the atomic versions of the table, and
for each version of the table the state is contained in a snapshot. This means that
processes (jobs) reading from the Delta table at specific versions (points in time) can
intuitively read only the specific changes between their local table snapshot, and the
current (latest) version of the table.

Incremental processing reduces the operational burden of maintaining a cursor (last
offsets, ids) or more complex state. Consider Example 5-1. We’ve probably seen a
job like this in our careers, or can surmise that it is taking a starting timestamp, a
set number of records to read, write, maybe delete, and is also taking the last record
identified of the last successful batch. It is easier to say the batch job is using a
checkpoint. But there is nothing easy about maintaining state.

Example 5-1. Providing state to a stateless batch job

% ./run-some-batch-job.py \
    --startTime x \
    –-recordsPerBatch 10000 \
    --lastRecordId z
 

With Delta Lake, we can use the startingVersion to provide a specific point in the
table to read from. Example 5-2 provides a glimpse at the same job with the starting‐
Version.

Example 5-2. Providing the Delta startingVersion to a stateless batch job

% ./run-some-batch-job.py –-startingVersion 10

Support for Time Travel
The biggest gain from transactions, aside from the ability to rewind and reset tables
based on incorrect inserts, is the ability to harness this power (time travel) to do new
things like view the state of a given table at specific points in time to compare changes
that have been made. This is a vantage point that few data engineers know they need,
and a capability that can drastically reduce mean-time-to-resolution (MTTR) since
each table has a history, and that history is very similar to git history or git blames for
those familiar.
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Schema Enforcement and Governance
Governance in the following context applies to the rules governing the structure of a
given table definition (DDL) which manage the columns, column types, and descrip‐
tive metadata that make up a table. Schema enforcement pertains to the consequences
of attempting to write invalid content into a table.

Delta Lake uses schema-on-write to achieve the high level of consistency required by
the classic databases and supports the governance that people have come to rely on
within database management systems (DBMS). For clarity, we’ll cover the differences
between schema-on-write and schema-on-read next.

Schema-On-Write
Because Delta Lake supports schema-on-write and declarative schema evolution, the
onus of being correct falls to the producers of the data for a given Delta Lake table.
However, this doesn’t mean that anything goes just because you wear the ‘producer
of the data’ hat. Remember that data lakes only become data swamps due to a lack of
governance. With Delta Lake, the initial successful transaction committed automati‐
cally sets the stage identifying the table columns and types. With a governance hat on,
we now must abide by the rules written into by the transaction log. This may sound a
little scary, but rest assured, it is for the betterment of the data ecosystem. With clear
rules around schema enforcement and proper procedures in place to handle schema
evolution, the rules governing how the structure of a table is modified ultimately
protect the consumers of a given table from problematic surprises.

Consistent Data & Quality Expectations
In the real world having invariants in place reduces the conversa‐
tion about who broke what, when, and where. With Delta Lake this
means to use the mergeSchema option infrequently and to be very
concerned if people want to use overwriteSchema. When using
Delta Lake with some established ways of working, the DeltaLog
will be your source of truth for arbitration, effectively removing
useless meetings since you can just about automatically pinpoint
root cause in the case that things did end up going off the rails just
by looking at DeltaTable.forName(spark, …).history(10).
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Schema-On-Read
Data Lakes use the schema-on-read approach because is no consis‐
tent form of governance or metadata native to the data lake–which
is essentially a glorified distributed file system. While schema-on-
read is flexible, it’s flexibility is also why data lakes are categorized
like the wild west ; ungoverned, chaotic and more often than not
problematic.
What this means is that while there is data in some location (direc‐
tory root), with some file type (json, csv, binary, parquet, text, and
more), with the ability for files being written to a specific location
to grow unbounded, there is a high potential for problems to grow
with the age of a dataset.
As a consumer of the data in the data lake at a specific location,
If you’re lucky, the data may be something you can extract and
parse–it may even have some kind of documentation if you’re really
lucky–and with enough lead time and compute, you can probably
accomplish your job. Without proper governance and type-saftey
however, the data lake can grow quickly to multiple terabytes, peta‐
bytes if you love burning money, of essentially data garbage with a
low-cost of storage overhead. While this is an extreme statement it
is also a reality in many data organizations.

Separation between Storage and Compute
Delta Lake provides a clear separation between storage and compute. One of the
biggest benefits of the data lake architecture is the flexibility of unbounded storage
and file system scalability. The lakehouse architecture adopts the benefits of the data
lake, since in today’s day and age, producing and consuming tons of data comes with
the territory of modern data, analytics and machine learning.

In theory, as long as you have strict governance in place around schema enforcement,
conformance, and evolution - that comes along with the invariants of schema-on-
write - coupled with opinionated support for the underlying file format (parquet),
then you gain near limitless scalability (within reason) for the data living in your
data lakehouse, using a file format that is interoperable and extremely portable. The
portability aspect can be broken down even further. You can take your Delta Lake
tables (pack the whole lakehouse up and go) from one cloud to another cloud, while
retaining the integrity of all your tables - including the transaction logs.
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2 For common append style writes to the table. Other operations like overwriting a table, or deleting the table
can affect streaming applications.

Separation Between Logical Action and Physical Reaction
It is worth pointing out that there is even more of a separation
between logical action within Delta Lake and the resulting physical
action on the underlying physical storage layer. Take the example
of cleaning up our tables from Chapter 6; there is a separation
between calling DELETE FROM on a given table and when the
physical files are affected (actually deleted). This is due to the
time travel capabilities (rewind/undo) that enable us to remove
accidental deletes. Delete’s that can otherwise harm the data integ‐
rity with no chance of restoration. Deleting data accidentally has
happened to everyone at one point or another in their career, just
not everyone admits to it! This is why the VACUUM and REORG
operations are so valuable. In order to really delete files an action
with a physical reaction must occur.

Support for Transactional Streaming
We introduced Delta’s streaming capabilities in Chapter 9. The ability to easily switch
between batch and streaming, across transactional tables, regardless of the specific
operation (inbound reads, or outbound writes) with Delta may initially sound magi‐
cal. Many the streaming pipeline has met its unexpected end due to distributed files
suddenly disappearing on source tables due to changes made to tables by outside
forces (like overwrite jobs to replace missing data), but with delta there is complete
support for multi-version concurrency control that means a streaming application
reading from a table, won’t be interrupted2 due to another writers operation.

Delta Lake supports full end-to-end streaming, without sacrificing quality for speed.
Everything has trade offs, and it is easy to go fast and operate blindly. In the real
world it is better to weigh the cost of delay with the need for speed, and come to a
general agreement on what tradeoffs the business or data team is willing to make to
achieve the correct balance. We can’t always have our cake and eat it too, but with
time travel, almost anything is possible.

Unified Access for Analytical and ML Workloads
Rounding things out, Delta provides a balanced approach to a wide range of data
related solutions. Data analysts and BI engineers can easily query using simple SQL
while there is also simultaneous support for efficient direct physical file access for
the data encompassing the Delta Lake tables, which provides the correct operating
model for data science and ML workloads where direct access to all columnar data is

122 | Chapter 5: Architecting Your Lakehouse



required including the ability to run iterative algorithms (in-place) within the scope
of a job.

Delta Sharing Protocol
Sharing data safely and reliably between internal and external stakeholders is one of
the hardest problems after data modeling. It is common practice to see ETL jobs that
export data out of the data lake, for example from one S3 bucket to another. The
reasons for essentially using file transfer protocol (FTP) to send and receive data rests
on missing standards for identity and access management (IAM) and interoperable
data formats. Delta Sharing protocol solves this problem.

Figure 5-2 shows the Delta Sharing Protocol. The physical Delta table exists as a
single-source of truth and the introduction of the Delta sharing server adds the miss‐
ing access controls and governance required to provide a safe and reliable exchange
of data.

Figure 5-2. The Delta Sharing Protocol the industry’s first open protocol for secure data
sharing, making it simple to share data with other organizations regardless of which
computing platforms they use

Using the Delta Sharing Protocol enables internal or external stakeholders secure
direct-access to Delta tables. This removes the operational costs incurred when
exporting data, while saving time, money, and engineering sanity while providing
a shared source-of-truth that is platform agnostic.

The general capabilities provided by the Delta protocol support the foundational
capabilities required by the data lakehouse. Now it is time for us to shift gears and
look more specifically at architecting for data quality within the lakehouse using a
purpose driven, layered data architecture called the Medallion Architecture.

The Medallion Architecture
Data in flight is messy, as it arrives–in all shapes, sizes and with varying degrees of
accuracy and completeness. Accepting that not all data will adhere to the myriad
end-user expectations, existing data contracts and established data quality checks,
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arrive on time — or ever is key to addressing these data quality problem. These
challenges place a high degree of pressure on data engineering teams to continuously
deliver across a dynamic landscape of subjective and objective requirements, and
borne from this collective toil came the Medallion Architecture.

The Medallion Architecture is a data design pattern used to logically organize data in
the lakehouse. This is accomplished using series of isolated data layers to provide a
framework for progressively refining datasets. Figure 5-4 shows a high-level view of
the architecture, with data flowing from batch or streaming sources across a variable
lineage from the point of initial ingestion (bronze), across multiple processing and
enhancement phases, or stages.

Figure 5-3. The Medallion Architecture is a procedural framework providing quality
gates and tiers from the point of ingestion and onwards toward the purpose-built curated
data product.

The Medallion Architecture provides a flexible framework for dealing with progres‐
sive enhancement of data in a structured way. It is worth pointing out that while it
is common to see three tiers, there is no rule stating that all use cases require three
tiers (bronze, silver, gold). It may be that more mature data practitioners will have a
two-tier system where golden tables are joined with other golden tables to create even
more golden tables. So the separation between silver and gold, or bronze and silver
may be fuzzy at times. The key reason for having a three-tiered framework enables
you to have a place to recover, or fall back on, when things go wrong, or requirements
change.

Exploring the Bronze Layer
The bronze layer represents the initial point for our data lineage within the Lake‐
house. A common practice here is to apply minimal transformations (if any) on the
data. There are the transformations that can’t be ignored, like converting the source
format into a compatible type for writing to Delta Lake. The result of the minimal

124 | Chapter 5: Architecting Your Lakehouse



3 Remembering that anything containing user data must be captured and processed according to the end-user
agreed upon consent and according to data governance by-laws and standards.

transformations approach means we leave the option open for reprocessing this raw
data to support additional use cases3, or modified requirements in the future.

Bronze Layer is for Minimal Augmentation
The most important requirement of the bronze layer is to trans‐
form source data for writing into Delta Lake. When taking a
minimal augmentation approach, it is also worth exploring ways
to simplify and even automate this initial ingestion step. Using
open data protocols that are interoperable with the DataFrame
APIs–for example by using type-safe, binary serializable exchange
formats like Apache Avro or Google Protocol Buffers–mean we
can spend more time solving better problems than ingestion. For
a small number of tables, it is arguable to ignore automation, but
as the surface area increases, ignoring automation is simply bad for
engineering mental health.

Minimal Transformations and Augmentation
Because we are ingesting data as close to “raw” as possible, we need to remember to
maintain a limited schema and do as little to transform the data as possible. Let’s use
a concrete example. Say we are reading data from a streaming source like Kafka and
want to capture the topic name, binary key and value, as well as the timestamp for
each record and write them into a Delta Lake table. These properties all exist in the
Kafka DataFrame structure (if we are using the KafkaSource api’s with Spark) and can
be extracted with the kafka-delta-ingest library (first explored in Chapter 5) as well.

Example 5-3 (ch11/notebooks/medallion_bronze.ipynb) is a concise example of mini‐
mal transformation and augmentation.

Example 5-3. Shows a simple bronze-style pipeline reading from Kafka, applying
minimal transformations, and writing the data out to Delta.

% reader_opts: Dict[str, str] = …
  writer_opts: Dict[str, str] = …
  bronze_layer_stream = (
    spark.readStream
    .options(**reader_opts)
    .format("kafka").load()
    .select(col("key"),col("value"),col("topic"),col("timestamp"))
    .withColumn("event_date", to_date(col("timestamp")))
    .writeStream
    .format('delta')
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    .options(**writer_opts)
    .partitionBy("event_date")
)
streaming_query = bronze_layer.toTable(...)

The extreme minimal approach applied in Example 5-3 takes only the information
needed to preserve the data as close to its raw form as possible. This technique puts
the onus on the silver layer to extract and transform the data from the value column.

While we are creating a minor amount of additional work, this bare bones approach
enables the future ability to reprocess (reread) the raw data as it landed from Kafka
without worrying about the data expiring (which can lead to data loss). Most data
retention policies for delete in Kafka are between 24 hours and 7 days.

In the case where we are reading from an external database, like Postgres, the min‐
imum schema is simply the table DDL. We already have explicit guarantees and
row-wide expected behavior given the schema-on-write nature of the database, and
therefor we can simplify the work required in the silver layer when compared to the
example shown in Example 5-3.

As a rule of thumb, if the data source has a type-safe schema (avro, protobuf), or
the data source implements schema-on-write, then we will typically see a significant
reduction in the work requried in the bronze layer. This doesn’t mean we can blindly
write directly to silver either since the the bronze layer is the first guardian blocking
unexpected or corrupt rows of data from its progression towards gold. In the case
where we are importing non type-safe data — as seen with csv or json data — the
bronze tier is incredibly important to weed out corrupt and otherwise problematic
data.

Guarding the Bronze Layer with Permissive Mode in Spark
Example 5-4 shows a technique called permissive passthrough with Spark. This
option allows us to add a gating mechanism using a predefined (consistent) schema
to block corrupt data, while preserving the non-conformant rows for debugging.

Example 5-4. Preventing Bad Data with Permissive Passthrough

% from pyspark.sql.types import StructType, StructField, StringType
known_schema: StructType = (
  StructType.fromJson(...)
  .add(StructField('_corrupt', StringType(), True, {
    'comment': 'invalid rows go into _corrupt rather than simply being dropped'
}))
happy_df = (
  spark.read.options(**{
    "inferSchema": "false",
    "columnNameOfCorruptRecord": "_corrupt",
    "mode": "PERMISSIVE",
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})
.schema(known_schema)
.json(...)

1. We begin by loading a known schema using the StructType.fromJson method,1.
we could just as easily have manually built the schema using the Struct
Type().add(...) pattern.

2. We then append the _corrupt field to our schema. This will provide a container2.
for our bad data to sit. Think of this like either the _corrupt column is null
or it contains a value. The data can then be read using a filter where(col("_cor
rupt").isNotNull()) or the inverse to separate the good from the bad.

3. We then apply the reader options: inferSchema:false, mode:Permissive, colum3.
nNameOfCorruptRecord:_corrupt. By turning off schema inference we opt-into
schema changes only by explicitly providing an updated schema. This means no
runtime surprises. Schema inference is a powerful technique that scans (samples)
a large number of rows of semi-structured data (like csv or json) to generate
what it believes to be a stable StructType (schema). The problem with schema
inference is it doesn’t understand the historical structure of the data, and is
limited to generating assumptions based on what it is provided in an initial
batch.

The technique from Example 5-4 can be applied to streaming transforms just as
easily using the from_json native function which is located in the sql.functions
package (pyspark.sql.functions.*, spark.sql.functions.*). This means we can
test things in batch, and then turn on the streaming firehose, understanding the exact
behavior of our ingestion pipelines even in the inconsistent world of semi-structured
data.

Summary
While the bronze layer may feel limited in scope and responsibility, it plays an
incredibly important role in debugging, recovery, and as a source for new ideas in
the future. Due to the raw nature of the bronze layer tables, it is also unadvisable to
broadcast the availability of these tables widely. There is nothing worse than getting
paged or called into an incident for issues arising from the misuse of raw tables.

Exploring the Silver Layer
With the bronze layer representing the initial point of lineage in the medallion
architecture, the silver layer represents the point where raw data is filtered, cleaned
and dressed up, and even augmented by joining across one or many other tables. If
the bronze layer is data in its infancy, the silver layer is data in its teenage years, and
just like we all were in our teens, our data coming of age story has its ups and downs.
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Used for Cleaning and Filtering Data
Depending on the source of the data that first landed in the bronze layer, we may be
in for a wild ride. Just like no two people are exactly alike, the general consistency and
baseline quality of each data source can vary wildly. This is where initial cleaning and
filtering come into play.

We clean up our data to normalize and present a consistent source of reliable data
for downstream consumption. Our downstream consumers may be ourselves, teams
within our organization, or even external stakeholders. On one extreme, we may
be extracting and decoding binary data that originated from streaming sources–like
Kafka–to convert from avro or protobuf, then applying additional transformations on
the resulting data. The output of our pipeline may result in nested or flattened rows.

It is also normal to be filtering or even dropping some columns at this point. In
Example 5-4, we saw the inclusion of the _corrupt column. This information isn’t
necessary for consumption in the silver or golden layer of the medallion architecture.
These are only provided to support data preservation techniques in the bronze layer
and as a form of communication between engineers.

It isn’t uncommon for engineers to provide _* columns like _corrupt or _debug that
contain simple information or more specific structs or maps. This technique can also
be used to carry observability metadata or additional context for reporting purposes.

Example 5-5 provides a continuation to Example 5-4, showing how we would pickup
reading from the bronze Delta table, then filter, drop, and transform rows for receipt
into the cleansed silver tables.

Example 5-5. Filtering, Dropping, and Transformations. All the things needed for
writing to Silver.

% medallion_stream = (
  delta_source.readStream.format("delta")
  .options(**reader_options)
  .load()
  .transform(transform_from_json)
  .transform(transform_for_silver)
  .writeStream.format("delta")
  .options(**writer_options))
  .option('mergeSchema': 'false'))
  streaming_query = (
    medallion_stream
    .toTable(f"{managed_silver_table}"))

The pipeline shown in Example 5-5 reads from the bronze delta table (from Exam‐
ple 5-3), decodes the binary data received (from the value column), while also ena‐
bling permissive mode which we explored in Example 5-4.
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def transform_from_json(input_df: DataFrame) -> DataFrame:
    return input_df.withColumn("ecomm",
        from_json(
            col("value").cast(StringType()),
            known_schema,
            options={
                'mode': 'PERMISSIVE',
                'columnNameOfCorruptRecord': '_corrupt'
            }
        ))

Then a second transformation is required as we make preparations for writing into
the silver layer. This is minor secondary transformation removing any corrupt rows,
and applying aliasing to declare the ingestion data and timestamp which could be
different from the event timestamp and date.

def transform_for_silver(input_df: DataFrame) -> DataFrame:
    return (
        input_df.select(
            col("event_date").alias("ingest_date"),
            col("timestamp").alias("ingest_timestamp"),
            col("ecomm.*")
        )
        .where(col("_corrupt").isNull())
        .drop("_corrupt"))

After the transformations are taken care of, we write the data out to our silver Delta
table. We also explicitly set the mergeSchema:false. While this is the default behavior,
it is an important call out since it flags to other engineers what the expected behavior
is, and to ensure accidental columns don’t mistakenly make their way to silver from
bronze. We covered alternatives to automatic schema evolution using ALTER TABLE
in chapter 6.

Regardless of why we clean and filter the bronze data, the results of our efforts pro‐
vide our stakeholders with more consistent and reliable data to power their myriad
use cases. We can consider the silver layer to be the first stable layer in the medallion
architecture.

Establishes a Layer for Augmenting Data
There is no rule stating that a silver table must read from a bronze table. In fact, it
is common for the silver layer to be used to join from one or many silver and even
golden tables. For example, if the results of cleaning and filtering one of our bronze
tables can be used to power multiple additional use cases, then we can save ourselves
both time and additional complexity by reusing the fruits of our internal teams and
external partners’ labor. Being able to view the lineage visually between bronze, silver,
and gold can help provide additional context as the number of tables and views, data
products and owners, naturally grows over time.
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Enables Data Checks and Balances
Delta provides capabilities for column based constraints to enhance the functionality
that can’t be provided with simple schema enforcement alone— Schema Enforcement
and Evolution was covered in Chapter 6.

With column level constraints, we can enforce more complex rules directly at the
table level by applying predicates in the form of CHECKs.

ALTER TABLE <tablename>
ADD CONSTRAINT <name>
CHECK <sql-predicate>

The upside here is that we can guarantee that the data in our table will never not meet
the constraint criteria. The downside is that if any row doesn’t meet the constraint’s
check, a DeltaInvariantViolationException will be thrown, short-circuiting the
job.

Data Quality frameworks can help simplify table constraints by separating the
rules from the underlying physical table definition. Popular frameworks in the open-
source world are Great Expectations, Spark Expectations, and Delta Live Table (DLT)
expectations–which is a paid offering by Databricks. Data quality is an important part
of DataOps, and it can help to block bad data before it leaves a specific layer within
the Medallion Archtiecture.

Summary
Remember, as data engineers we need to act like owners and provide excellent
customer service to our data stakeholders. The earlier in the refinement process we
can establish good quality gates, the happier our downstream data consumers will be.

Exploring the Gold Layer
The gold layer is the most mature data layer in the medallion architecture. Just like
silver was on the path to being all grown up, but not quite, data in the gold layer
has undergone multiple transformations, and has been specifically curated and has a
specific place in the data world. This is because data in the gold layer is curated, and
purpose built to solve explicit intended goals. If bronze represents data as an infant,
and silver is a teenager, then golden tables represent data in its late thirties or early
forties — or at a point where they have established a concrete identity.

Establishes High-Trust and High Consistency
While the analogy to data as people at different points in their lives might not be
accurate, as a mental model data it works. Data in the golden layer is much less likely
to change drastically from day to day in the same way that our personalities, wants,
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and wishes change with a slower pace as we age. Example 5-6 explores generating
topN reports from the transformations out of our silver layer (Example 5-5).

Example 5-6. Creating Intentional Tables for Business-Level Consumption

% pyspark
silver_table = spark.read.format("delta")...
top5 = (
  silver_table
  .groupBy("ingest_date", "category_id")
  .agg(
    count(col("product_id")).alias("impressions"),
    min(col("price")).alias("min_price"),
    avg(col("price")).alias("avg_price"),
    max(col("price")).alias("max_price")
  )
  .orderBy(desc("impressions"))
  .limit(5))
(top5
  .write.format("delta")
  .mode("overwrite")
  .options(**view_options)
  .saveAsTable(f"gold.{topN_products_daily}"))

The prior example shows how to do daily aggregations. It is typical for reporting data
to be stored in the gold layer. This is the data we (and the business) show care about.
It is our jobs to ensure that we provide purpose built tables (or views) to ensure
business critical data is available, reliable, and accurate.

For foundational tables–and really with any business critical data–surprise changes
are upsetting and may lead to broken reporting as well as inaccurate runtime infer‐
ence for machine learning models. This can cost the company more than just money,
it can be the difference between retaining customers and reputation in a highly
competitive industry.

Summary
The gold layer can be implemented using physical tables or virtual tables (views).
This provides us with ways of optimizing our curated tables that result in either a
full physical table when not using a view, and simple metadata providing any filters,
column aliases, or join criteria required when interacting with the virtual table. The
performance requirements will ultimately dictate the usage of tables vs views, but in
many cases a view is good enough to support the needs of many gold layer use cases.

Now that we’ve explored the medallion architecture, the last stop on our journey
will be to dive into patterns for decreasing the level of effort and time requirements
from the point of data ingestion to the time when the data becomes available for
consumption for downstream stakeholders at the gold edge.
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Streaming Medallion Architecture
Earlier we learned that the Medallion Architecture is a data design pattern enabling
us to solve common data problems encountered with any data in flight. The problems
being:

• Lack of replay or recovery (which is solved with the bronze layer)•
• Broken column-level expectations (which is solved with the Delta protocol and•

turning off mergeSchema, and ignoring overwriteSchema unless needed as a last
resortl).

• Problems with column specific data quality and correctness. Which can be solved•
with constraints, or by using utility libraries like spark-expecations, or Delta Live
Tables with @dlt.expect).

While we’ve already looked at patterns to refine data using the medallion architecture
to remove imperfections, adhere to explicitly defined schemas, and provide data
checks and balances, what we didn’t cover was how to provide a seamless flow for
transformations from bronze to silver and silver to gold.

Time tends to get in the way more often than not — with too little time, there is not
enough information to make informed decisions, and with too much time, there is a
tendency to become complacent and sometimes even a little bit lazy. Time is much
more of a goldilocks problem, especially when we concern ourselves with reducing
the end-to-end latency for data traversing our lakehouse. In the next section, we will
look at common patterns for reducing the latency of each tier within the medallion
architecture, focusing on end-to-end streaming.

Reducing End to End Latency within your Lakehouse
As we’ve seen across the book, the Delta protocol supports both batch or streaming
access to tables. We can deploy our pipelines to take specific steps ensuring that the
datasets that are output meet both our quality standards and result in the ability to
trust the upstream sour es of data, enabling us to drastically reduce the end-to-end
latency from data ingestion (bronze) on through (silver), and ultimately into the
hands of the business or data product owners in the (gold) layer.

By crafting our pipelines to block and correct data quality problems before they
become more widespread, we can use the lessons learned across Example 5-3 through
Example 5-5 to stitch together end-to-end streaming workflows.

Figure 5-4 provides an example of the streaming workflow. Data arrives from our
Kafka topic, as we saw in Example 5-3. The dataset is then appended to our bronze
delta table (ecomm_raw) which enables us to pick up the incremental changes in
our silver application. The example providing the transformations was shown in
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Example 5-5. Lastly, we either create and replace temporary views (or materialized
views in Databricks), or create another golden application with the responsibility
of periodically ingesting data from ecomm_silver to produce purpose built tables
or views. Extending the pattern seen in Example 5-6, we can stitch together an
end-to-end pipeline that incrementally ingests from its direct upstream allowing us to
trace the lineage of transformations all the way back to the initial point of inception
(kafka).

Figure 5-4. Streaming Medallion Architecture as viewed from the workflow level.

There are many ways to orchestrate end-to-end worlkflows, using scheduled jobs,
or full-fledged frameworks like Apache Airflow, Databricks Workflows or Delta Live
Tables. The end result provides us with reduced latency from the edge all the way to
our most important, business-critical, golden tables.

Summary
This chapter introduced the architectural tenets of the modern Lakehouse architec‐
ture and showed how Delta Lake can be used for foundational support for this
mission.

Built on open-standards, with open-protocols and formats, supporting ACID trans‐
actions, table-level time-travel, simplified interoperability with UniForm, as well as
out-of-the-box data sharing protocols to simplify the exchange of data both for
internal and external stakeholders. We skimmed the surface of the Delta protocol and
learned more about the invariants that provide us with rules of engagement as well as
table-level guarantees, by looking at how schema-on-write, and schema enforcement
protect our downstream data consumers from accidental leakage of corrupt or low
quality data.

We then looked at how the medallion architecture can be used to provide a standard
framework for data quality, and how each layer is utilized across the common bronze-
silver-gold model.
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The quality gating pattern enables us to build a consistent data strategy and provide
guarantees and expectations based on a model of incremental quality from bronze
(raw) to silver (cleansed and normalized) up to gold (curated and purpose driven).
How data flows within the lakehouse, between these gates enables a higher level of
trust within the lakehouse, and even allows us to reduce the end-to-end latency by
enabling end-to-end streaming in the lakehouse.
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CHAPTER 6

Performance Tuning: Optimizing Your Data
Pipelines with Delta Lake

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 12th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Up to this point, you’ve explored various ways of working with Delta Lake. You’ve
seen many of the features that make Delta Lake a better and more reliable choice
as a storage format for your data. Tuning your Delta Lake tables for performance,
however, requires a solid understanding of the basic mechanics of table maintenance,
which was covered in Chapter 6, as well as a bit of knowledge and practice manipu‐
lating or implementing some of the internal and advanced features introduced in
Chapters 7 and 10. This performance side becomes the focus now with details on
the impact of pulling the levers of some of those features in a bit more detail. It’s
encouraged to do a review of the topics laid out in Chapter 6 if you have not recently
used or reviewed them.

In general, you will often want to maximize reliability and the efficiency with which
you can accomplish data creation, consumption, and maintenance tasks without

135

mailto:gobrien@oreilly.com


1 If you wish to see more about data modeling and E-R diagrams check out Appendix A in Learning SQL, 3rd
ed. by Alan Beauliue (https://www.oreilly.com/library/view/learning-sql-3rd/9781492057604/) or the Wikipedia

adding unnecessary costs to our data processing pipelines. By taking the time to
optimize our workloads properly you can balance the overhead costs of these tasks
with various performance considerations to align with your objectives. What you
should be able to gain here is an understanding of how tuning some of the features
you’ve already seen can help to achieve your objectives.

First, there’s some background work to make sure to provide some clarity on the
nature of your objectives. After this, there is an exploration into several of Delta
Lake’s features and how they impact these objectives. While Delta Lake can generally
be used suitably with limited changes, when you think about the requirements put
on modern data stacks you should realize you could always do better. In the end,
taking on performance tuning involves striking balances and considering tradeoffs
to gain advantages where you need them. Because of this, it is best to make sure
and think about what other settings are affected when you consider modifying some
parameters.

Performance Objectives
One of the biggest factors you need to consider is whether you want to try and opti‐
mize best for data producers or consumers. As discussed in Chapter 11, the medallion
architecture is an example of a data architecture that allows you to optimize for both
reading and writing where needed through data curation layers. This separation of
processes helps you to streamline the process at the point of data creation and the
point of consumption by focusing on the goals of each at different points in the
pipeline. Let’s first consider some of the different objectives towards which you might
want to orient your tuning efforts.

Maximizing read performance
Optimizing your processes for data consumers can be more simply thought of as
improving the read performance on your datasets. You might have data scientists who
rely on repeated reads on subsets of a dataset to build accurate machine-learning
models, or business analysts looking to derive and convey specific information to
business stakeholders. The data consumer’s needs should be considered in the design
and layout of your processes. While this section won’t contain a deep dive into
requirements gathering or Entity Relationship (E-R) diagrams, proper data modeling
is a high-value prerequisite to building a successful data platform whether curation
and governance happen centrally or are more distributed such as with a data mesh
architecture.1 The data consumer needs you are primarily concerned with here are
how those data consumers will access data the majority of the time. Broadly speaking,
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pages for data modeling (https://en.wikipedia.org/wiki/Data_modeling) and the entity-relationship model
(https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model).

queries will fall into any of three types of patterns: narrow point queries, broader
range queries, and aggregations.

Point Queries
Point queries are those queries where a data consumer, or user, submits a query
intended to return a single record from a dataset. For example, a user may access a
database to look up individual records on a case-by-case basis. These users are less
likely to use advanced query patterns involving SQL-based join logic or advanced fil‐
tering conditions. Another example is a robust web-server process retrieving results
programmatically and dynamically on a case-by-case basis. These queries are more
likely to be evaluated with higher levels of scrutiny concerning perceived perfor‐
mance metrics. In both cases there is a human at the other end who is impacted by
the query’s performance, so you want to avoid any delays in record look-up without
incurring high costs. This could mean in some cases, like the latter one potentially,
that a high-performance, dedicated, transactional system is required to meet latency
requirements but this is often not the case and through the tuning methods seen here
you may be able to meet targets adequately without the need of secondary systems.

Some of the things you’ll consider are how things like file sizes, keys or indexing,
and partitioning strategies can impact point query performance. As a rule of thumb,
you should tend to steer toward smaller file sizes and try to use features like indexes
that reduce latency when searching for a needle in a haystack even if the haystack
is an entire field. You’ll also see how statistics and file distribution impact lookup
performance.

Range Queries
Range queries retrieve a set of records instead of a single record result like in a point
query (which you can think of as just a special case with narrow boundaries). Rather
than having an exact filter-matching condition, you’ll find that these queries look for
data within boundaries. Some common phrases that suggest such situations might be:

• between•
• at least•
• prior to•
• such that•

Many others are possible but the general idea is that many records could satisfy such
a condition (though it’s still possible to wind up with just a single record). You will
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still encounter range queries when you use exact matching criteria describing broad
categories, like selecting cats as the type of animal from a list of pet species and
breeds; you would only have one species but many different breeds. In other words,
the result you look to obtain will generally be greater than one. Usually, you wouldn’t
know the specific number of records without adding some ordering element and
further restricting the range.

Aggregations
On the surface, aggregation queries are similar to range queries except that instead of
selecting down to a particular set of records you’ll use additional logical operations
to perform some operation on each group of records. Borrowing from the pets
example, you might want to get a count of the number of breeds per species or some
other summary type of information. In these cases, you’ll often see some type of
partitioning of the data by category or by breaking fine-grained timestamps down to
larger periods (e.g. by year). Since aggregation queries will perform many of the same
scanning and filtering operations as range queries they will similarly benefit from the
same kinds of optimizations.

One of the things you’ll find here is that your preferences for how you create files in
terms of size and organization depend on how you generally select the boundaries or
define the groups for this type of usage. Similarly, indexing and partitioning should
generally be aligned with the query patterns to produce more performant reads.

The similarities between point queries, range queries, and aggregation queries can be
summarized as: “To deliver the best performance, you need to align the overall data
strategy with the way the data is consumed.” This means you’ll want to consider the
data layout strategy in addition to the consumption patterns as you optimize tables.
To do so you will also have to consider how you maintain the data, and how running
maintenance processes like optimize or collecting statistics impacts this performance
and schedule any downtime as needed.

Maximizing write performance
Optimizing the performance for data producers is more than just reducing latency,
the time lapse between receipt (ingestion) of a record and writing (committing)
it to storage where it is then available for consumption. While you usually will
want to minimize this time as much as possible, striking a balance between SLAs,
performance objectives, and cost, there is more you must consider as well. You’ve
already seen a few of the ways you’ll want to think about how the strategy you use
for your data architecture should be driven by the data consumers, principally by
aligning optimization goals to the kinds of query patterns that are used. What you
must also remember is that you usually are not fortunate enough to have so much
control as to be able to specify exactly how you’d like to receive data, and so you also
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have constraints driven by the upstream data producers, i.e., the systems generating
the data.

You might have to join numerous different data sources together to deliver the data
asset your business requires. These can range from infrequently uploaded files in
shared cloud storage locations and legacy RDBMS instances to memory stores and
high-volume message bus pipelines. The type of systems involved will drive much of
the decision-making because things like the volume and frequency with which you
receive the data will influence how your data application’s need to perform which
further impact the overall data strategy.

Trade-Offs
As it was noted, many of the constraints on your write processes will be determined
by the producer systems. If you are thinking of large file-based ingestion or event or
micro-batch level stream processing then the size and number of transactions will
vary considerably. Similarly, if you are working with a single-node Python application
or using larger distributed frameworks you will have such variance. You will also
need to consider the amount of time required for processing as well as the cadence.
Many of these things have to be balanced and so again, the medallion architecture
lends a hand because you can separate some of these concerns by optimizing for your
core data-producing process at the bronze level and for your data consumers at the
gold level with the silver level forming a kind of bridge between them. Refer back to
Chapter 11 if you want to review the medallion architecture.

Conflict Avoidance
How frequently you perform write operations can limit when you can run table
maintenance operations, for example, when you are using z-ordering. If you are using
Structured Streaming with Apache Spark to write micro-batch level transactions to
Delta Lake to a table partitioned by the hour then you have to consider the impacts
of running other processes against that partition while it is still active (see more about
concurrency control in the appendix). How you choose options like auto-compaction
and optimized writes also impacts when or whether you even need to run additional
maintenance operations. Building indexes takes time to compute and could conflict
with other processes too. It’s up to you to make sure you avoid conflicts when needed
though it is much easier to do so than it was with things like read/write locks involved
in every file access.

Performance Considerations
So far you’ve seen some of the criteria on which you’ll want to base much of your
decision-making in how you interact with Delta Lake. You have many different tools
built-in and how you use them usually will depend on how a particular table is
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interacted with. Our goal now is to look at the different levers you can pull and think
about how the way you set different parameters can be better for any of the above
cases. Some of this will review concepts discussed in Chapter 6 in the context of data
producer/consumer trade-offs.

Partitioning
One of the great things about Delta Lake is data can still be partitioned like Parquet
files using Hive-style partitioning.2 However, being able to partition tables in this way
is also one of the drawbacks (be sure not to miss the section on liquid clustering in
this chapter). You can partition a Delta table by a column or even multiple columns.
The most commonly used partition column is date but in high-volume processes it’s
not uncommon to find tables with multiple levels of partitioning using even hour and
minute columns. This is a bit excessive for most processes but technically you’re not
limited in how fine-grained you can make your partitioning structure, but you may
be doing so at your own peril! Over-partitioned tables can yield many headaches in
terms of poor performance.

Structure
The easiest way to think about what partitioning does is it breaks a set of files into
sorted directories tied to your partitioning column(s). Suppose you have a customer
membership category column where every customer record will either fall into a
“paid” membership or a “free” membership, like in the following example. If you
partition by this membership type column then all of the files with “paid” member
records will be in one subdirectory while all of the files with the “free” member
records will be in a second directory.

# Python
from deltalake.writer import write_deltalake
import pandas as pd
 
df = pd.DataFrame(data=[
     (1, "Customer 1", "free"),
     (2, "Customer 2", "paid"),
     (3, "Customer 3", "free"),
     (4, "Customer 4", "paid")],
     columns=["id", "name", "membership_type"])
 
write_deltalake(
    "/tmp/delta/partitioning.example.delta",
  data=df,
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3 See more on this in the Delta Lake whitepaper: https://www.databricks.com/wp-content/uploads/2020/08/p975-
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  mode="overwrite",
  partition_by=["membership_type"])

By forcing the partitioning down and simultaneously partitioning by the member‐
ship_type column you should see when you check the write path directory that you
get a subdirectory for each of the distinct values in the membership_type column.

# Bash
tree /tmp/delta/partitioning.example.delta
 
/tmp/delta/partitioning.example.delta
├── _delta_log
│   └── 00000000000000000000.json
├── membership_type=free
│   └── 0-9bfd1aed-43ce-4201-9ef0-1d6b1a42db8a-0.parquet
└── membership_type=paid
    └── 0-9bfd1aed-43ce-4201-9ef0-1d6b1a42db8a-0.parquet

The following section can help you figure out when or when not to partition tables
and the impact those decisions bear on other performance features but understand‐
ing the larger partitioning concept is important as even if you don’t choose to parti‐
tion tables yourself, you could inherit ownership of partitioned tables from someone
who did.

Pitfalls
There are some cautions laid out for you here in regards to just the partitioning
structure in Delta Lake (remember the table partitioning rules from Chapter 6!).
Deciding on the actual file sizes you need to use is impacted by what kind of data
consumers will use the table, but the way you partition our files has downstream
consequences too. Generally, you will want to make sure that the total amount of data
in a given partition is at least 1GB and you don’t want partitioning at all for total
table sizes under 1TB. Anything less and you can incur large amounts of unnecessary
overhead with file and directory listing operations, most especially if you are using
Delta Lake in the cloud.3 This means that if you have a high cardinality column then
in most cases you should not use it as a partitioning column unless the sizing is still
appropriate. In cases where you need to revise the partitioning structure, you should
use methods like those outlined in Chapter 6 (Recovering and Replacing Delta Lake
Tables) to replace the table with a more optimized layout. Over-partitioning tables is
a problem that has been seen as causing performance problems for numerous people
over time. It’s far better to take the time to fix the problem than to pass poorer
performance downstream.
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File sizes
One direct implication that results from over-partitioning is that file sizes often turn
out to be too small. Overall file sizes of about 1GB are recommended to handle large-
scale data processes with relative ease. There have been many cases, however, where
leveraging smaller file sizes, typically in the 32-128MB range, can have performance
benefits for read operations. When to choose either comes down to considering the
nature of the data consumer. High-volume, append-only tables in the bronze layer
generally function better with larger sizes as the larger file sizes maximize throughput
per operation with little regard to anything else. The smaller sizes will help a lot more
with finer-grained read operations like point queries or in cases where you have lots
of merge operations because of the higher number of file rewrites generated.

In the end, file size will often wind up being determined by the way you apply
maintenance operations. When you run optimize, and in particular when you run it
with the included z-ordering option, you’ll see that it affects your resulting file sizes.
You do, however, have a couple of base options for trying to control the file sizes.

Table Utilities
You’re probably pretty familiar with some version of the small files problem. While
it was originally a condition largely affecting elephantine MapReduce processing,
the underlying nature of the problem extends to more recent large-scale distributed
processing systems as well.4 In Chapter 6, you saw the need to maintain your Delta
Lake tables and some of the tools available to do it. Some of the scenarios that were
covered were, for example, that for streaming use cases where the transactions tend to
be smaller, you need to make sure you rewrite those files into bigger ones to avoid a
similar small file problem. Here you’ll see how leveraging these tools can affect read
and write performance while interacting with Delta Lake.

Optimize

The optimize operation on its own is intended to reduce the number of files con‐
tained in a Delta Lake table (recall the exploration in Chapter 6). This is true in
particular of streaming workloads where you may have micro-batches creating files
and commits measured in just a couple of MB or less and so can wind up with
many comparatively small files. Compaction is a term used to describe the process
of packing smaller files together and is often used when talking about this operation.
One of the most common performance implications of compaction is the failure
to do it. While there could be some minute benefits to such small files (like rather
fine-grained column statistics), this is generally heavily outweighed by the costs of
listing and opening many files.
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How it works is that when you run optimize you kick off a listing operation that
lists all of the files that are active in the table and their sizes. Then any files that can
be combined will be combined into files around the target size of 1GB. This helps
to reduce issues that might occur from, for example, several concurrent processes
committing smaller transactions to the same Delta Lake destination. In other words,
optimize is a mechanism to help avoid the small file problem.

Remember, there is some overhead to the operation because it has to read multiple
files and combine them into the files that eventually get written so it is a heavy I/O
operation. Removing the file overhead is part of what helps to improve the read time
for downstream data consumers. If you are using an optimized table downstream as a
streaming source, as you explored in Chapter 9, the resulting files are not data change
files and are ignored.

It’s important to recall that there are some file size settings with optimize you
can tweak to tune performance more to your preference. These settings and their
behavior are covered in depth in Chapter 6. Next, you can take a deeper look at
z-ordering, which is instructive even if you’re planning on using liquid clustering as
the underlying concepts are strongly related.

Z-Ordering
Sometimes the way you insert files or model the data you’re working with will
provide a kind of natural clustering of records. Say you insert one file to a table
from something like customer transaction records or aggregate playback events from
a video device every 10 minutes. Then say you want to go back an hour later to
compute some KPIs from the data. How many files will you have to read? You already
know it’s six because of the natural time element you’re working with (assuming you
used event or transaction times). You might describe the data as having a natural,
linear clustering behavior. You can apply the same description to any cases where a
natural sort order is inherent to the data. You could also artificially create a sorting or
partitioning of the data by alphabetizing, using unique universal identifiers (UUIDs),
or using a file insertion time, and reordering as needed.

Other times, however, your data may not have a native clustering that also lends itself
to how it will be consumed. Sorting by an additional second range might improve
things but filtering for the first sorting range will almost always yield the strongest
results. This trend continues to diminish in value as additional columns are added
because it’s still too linear.

There’s a method used in multiple applications, one which extends well beyond just
data applications, and the method relies on re-mapping the data using a space-filling
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curve.5 Without getting into too much of the rigorous detail (yet), this is a con‐
struction that lets us map multidimensional information, like the values of multiple
columns, into something more linear, like a cluster id in a sorted range. A bit more
specifically, what you need are locality-preserving, space-filling curves like a Z-order
or Hilbert curve which are among the most commonly used.6 These allow us to create
clusters of data in a far less linear style which can provide great gains in performance
for data consumers, especially for fine-grained point queries or more complex range
queries.

In other words, this multi-dimensional approach means you can more easily filter
on disjoint conditions. Consider a case where you have a customer or device ID num‐
ber column and location information. These columns wouldn’t have any particular
correlation so there’s no natural, linear clustering order. Space-filling curves would
allow you to impose a clustering order on them anyway. You’ll see more detail about
how it works but from a practical perspective, this means you can filter down to the
combined clusters rather than get stuck having to read a full dataset.

For data producers, this represents an additional step in data production which slows
down processes so the need for it downstream should be determined in advance. If
no one benefits then it wouldn’t be worth the cost of applying it. That being said, the
process is largely incremental and can be run on individual partitions when specified.

Compaction with optimize using zorder by is not idempotent (this is one of those
cases where the data change flag will be False) but is designed to be incremental when
it runs. That is to say when no new data is added to a partition (or to the table in
the case of unpartitioned tables), then it will not try to cluster that partition or table
again. This behavior expects that you are using the same column specifications for
z-ordering, which makes sense because a new column specification would require
re-clustering over the whole partition (or table).
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7 There is a more detailed example of z-ordering later in this chapter but if you’re in a hurry this
is a good and fast end-to-end walkthrough: https://dennyglee.com/2024/01/29/optimize-by-clustering-not-
partitioning-data-with-delta-lake/.

Z-ordering attempts to create clusters of similar size in memory
which typically will be directly correlated with the size on disk but
there are situations where this can become untrue. In those cases,
task skewing can occur during the compaction process.
For example, if you have a string column containing JSON values
and this column has significantly increased in size over time, then
when zordering by date, both the task durations and the resulting
file sizes can become skewed during later processing.
Except for the most extreme cases, this should generally not signifi‐
cantly affect downstream consumers or processes.

One thing you might notice if you experiment with and without z-ordering of files in
your table is that it changes the distribution of the sizes of the files. While optimize,
left to its defaults, will generally create fairly uniformly sized files, the clustering
behavior you put in place means that file sizes can become smaller (or larger) than
the built-in file size limiter (or one specified when available). This preference for the
clustering behavior over strict file sizing is intended to provide the best performance
by making sure the data gets co-located as desired.7

Optimization Automation in Spark
Two settings available in Databricks, specifically autocompaction and optimized
writes, help make some of these table utilities easier to use and less interruptive
(e.g., stream processing workloads). In the past, their combined usage was often
called auto-optimize. Now, they can be treated individually because not only can they
be used together, but, in many instances, they can be flexibly used independently as
needed in different situations, to great advantage.

Autocompaction.    The first setting, delta.autoCompact, has been available in the
Databricks runtimes for a few years but is expected to become available across Delta
Lake. The idea of autocompact is that it can run optimize on your table while a
process is already running without additional commands. One of the biggest advan‐
tages is that you don’t need to have a secondary process running that can conflict
with a stream processing application, for example. The downside is that there could
be a relatively minor effect on the processing latency. This is because after a file is
committed Spark will perform an optimize operation as part of the same process.
It analyzes the files available in the table and applies the compaction as necessary.
This can be especially helpful with a streaming write based on a message bus as
the transactions tend to be smaller than you would find in many other workload
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8 https://docs.databricks.com/delta/tune-file-size.html#optimized-writes-for-delta-lake-on-databricks

types but it does come as a trade-off since it will insert additional tasks to do the
compaction which can hold up processing time. This means for cases with tight SLA
margins you may wish to avoid using it.

Enabling the feature is just a spark configuration setting:

delta.autoCompact.enabled true

There are a few additional settings that provide added flexibility that allow you to
align the behavior of the compaction operations to your choosing.

While this feature can improve the way you use optimize with
Delta Lake, it will not allow the option of including a zorder on
the files. You may still need additional processes even when used to
provide the best performance for downstream data consumers.

You can control the target output size of autocompact with spark.data

bricks.delta.autoCompact.maxFileSize. While the default of 128 MB is often
sufficient in practice, you might wish to tune this to a higher or lower number to
balance between the impacts of rewriting multiple files during processing, whether or
not you plan to run periodic table maintenance operations, and your desired target
end state for file sizes.

The number of files required before compaction will be initiated is set through
spark.databricks.delta.autoCompact.minNumFiles. The default number is 50.
This just makes sure you have a lower threshold to avoid any negative impact of
additional operations on small tables with small numbers of files. Tables that are
small but have many append and delete operations might benefit from setting this
lower because this would create fewer files but would have less performance impacts
due to the smaller size. A higher setting might be beneficial for rather large-scale pro‐
cesses where the number of writes to Delta Lake in a single transaction is generally
higher. This would avoid running an optimize step for every write stage where it
could become burdensome in terms of added operational costs for each transaction.

Optimized Writes.    This setting too is a Databricks-specific implementation on Delta
Lake but is expected across all versions.8 In the past, you might often end up in
scenarios where the number of DataFrame partitions you were using grew much
larger than the number of files you might want to write into because the size of each
file would be too small and create additional unneeded overhead. To solve this you’d
generally do something like like coalesce(n) or repartition(n) before the actual
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write operation to get your results compacted down to just n files being written.
Optimized writes are a way to avoid needing to do this.

If on your table you set delta.optimizeWrites to true, or similarly in your Data‐
bricks spark session if you set spark.databricks.delta.optimizeWrites.enabled
to true you get this different behavior. The latter setting will apply the former option
setting to all newly created tables from the spark session. You might be wondering
how this magical automation gets applied behind the scenes. What happens is before
the write part of the operation happens you will get additional shuffle operations
(as needed) to combine memory partitions so that fewer files can be added during
the commit. This is beneficial on partitioned tables because the partitioning tends
to make files even more granular. The added shuffle step can add some latency into
write operations so for data producer optimized scenarios you might want to skip
it, but it provides some additional compaction automatically similar to autoCompact
above except that it occurs prior to the write operation rather than happening after‐
ward. Figure 6-1 shows the difference in a case where the distribution of the data
across multiple executors would result in multiple files written to each partition and
how the added shuffle improves the arrangement.

Figure 6-1. Comparison of how optimized writes add a shuffle before writing files.

Vacuum
Because things like failed writes are not committed to the transaction log, you need
to make sure you vacuum even append-only tables that don’t have optimize run
on them. Write failures do occur from time to time, whether due to some cloud
provider failure or perhaps something else, and the resulting stubs still live inside
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9 There’s a more in depth exploration of vacuuming with examples and exploration of some of the nuances
here: https://delta.io/blog/2023-01-03-delta-lake-vacuum-command/

your Delta Lake directory and could do with a little cleaning up. Not doing it early
is another issue that can cause some pain. We’ve seen some fairly large Delta tables
in production where cleaning up got overlooked during planning, and it wound up
becoming a larger and costlier chore to handle because by that point, millions of files
needed removal (it took around three full days to fix in one case). In addition to
the unnecessary storage costs associated, any external transactions hitting partitions
containing extra files have many more files to sift through. It’s much better to have
a daily or weekly cleanup task or even to include maintenance operations in your
processing pipeline. The details around the operation of vacuuming were shared in
Chapter 6 but the implications of not doing it are worth mentioning here.9

Databricks Autotuning
Databricks includes a couple of scenarios where, when enabled, they automatically
adjust the delta.targetFileSize setting. One case is based on workload types and
the second is on the table size.

In DBR 8.2 and later, when delta.tuneFileSizesForRewrites is set to true, the
runtime will check whether or not nine out of the last ten operations against the
table were merge operations. In cases where that is the case, the target file size will be
reduced to improve write efficiencies (at least some of the reasoning has to do with
statistics and file skipping which will be covered under Table Statistics).

From DBR 8.4 onward the table size is accounted for in determining this setting. For
tables less than about 2.5 TB the delta.targetFileSize setting will be put at a lower
value of 256 MB. If the table is larger than 10 TB the target will be set at a larger 1
GB. For sizes that fall in the intermediate range between 2.5 TB and 10 TB, there is a
linearly increasing scale for the target from 256 MB up to the 1 GB value. Please refer
to the documentation for additional details with a reference table for this scale.

Table Statistics
Up to this point, most of the focus has been centered around the layout and distribu‐
tion of the files in your tables. The reason for this has a great deal to do with the
underlying arrangement of the data within those files. The primary way to see what
that data looks like is based on the file statistics in the metadata. Now you will see
how you get statistics information and why it matters to you. You’ll see what the
process looks like, what the stats look like, and how they influence performance.
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How
Statistics about our data can be pretty useful. You’ll see more about what this means
and looks like in a moment, but first, let’s think about some reasons why you might
want statistics on the files in our Delta Lake. Suppose that you have a table with
a ‘color’ field that takes 1 of 100 possible values, and each color value occurs in
exactly 100 rows. This gives us 10,000 total rows. If these are randomly distributed
throughout the rows then finding all of the ‘green’ records would require scanning
the whole set. Suppose you now add some more structure to the set by breaking
it into ten files. In this case, you might guess that there are green records in each
of the ten files. How could you know whether that is true without scanning all ten
files? This is part of the motivation for having statistics on our files, namely that if
you do some counting operations at the time of writing the files or as part of our
maintenance operations then you can know from your table metadata whether or
not specific values occur within files. If your records are sorted this impact gets even
bigger because then you can drastically reduce the number of files that need to be
read to find all of your green records or to find the row numbers between 50 and
150 as you see in Figure 6-2. While this example is just conceptual, it should help to
motivate why table statistics are important, but before you turn to a more detailed
practical example see first how statistics operate in Delta Lake.

Figure 6-2. The arrangement of the data can affect the number of files read.
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File Statistics
If you go back to the customer data table you created earlier you can get a simple
view of how statistics are generated during file creation by digging into the delta
log. It’s recommended to check the values or the relevant section of the Delta Lake
protocol to see additional statistics that are added over time. Here you can use the
path definition of your table and then add to that the initial JSON record from the
table’s creation in the _delta_log directory.

## Python
import json
 
basepath = "/tmp/delta/partitioning.example.delta/"
fname = basepath + "_delta_log/00000000000000000000.json"
with open(fname) as f:
    for i in f.readlines():
        parsed = json.loads(i)
        if 'add' in parsed.keys():
           stats = json.loads(parsed['add']['stats'])
           print(json.dumps(stats))

When you run this you will get a collection of the statistics generated for each of the
created files added to the Delta Lake table.

{
  "numRecords": 2,
  "minValues": {"id": 2, "name": "Customer 2"},
  "maxValues": {"id": 4, "name": "Customer 4"},
  "nullCount": {"id": 0, "name": 0}
}
{
  "numRecords": 2,
  "minValues": {"id": 1, "name": "Customer 1"},
  "maxValues": {"id": 3, "name": "Customer 3"},
  "nullCount": {"id": 0, "name": 0}
}

In this case, you see all of the data values since the table only has four records and
there were no null values inserted so those metrics are returned as zeros.

Notice in the example statistics pulled from the partitioning dem‐
onstration table that there is a count of records for each file.
Apache Spark leverages this count to avoid reading any actual data
files when running simple count operations that span partitions or
entire tables by summing the statistics rather than scanning any
data files providing a significant performance advantage in many
applications. Similarly, Spark can leverage these stats to perform‐
antly answer similar queries like:

## SQL
select max(id) from example_table
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10 There is an example in the section covering the cluster by command that demonstrates this practice.

In Databricks (DBR 8.3 and above) you can additionally run an analyze table
command to collect additional statistics such as the number of distinct values, aver‐
age length, and maximum length. These added statistics values can yield further
performance improvements, so be sure to leverage them if you’re using a compatible
compute engine.

If you recall from Chapter 6, one of the settings you have available to you is
delta.dataSkippingNumIndexedCols, which, with a default value of 32, determines
how many columns statistics will be collected on. If you have a situation where you
are unlikely to run select queries against the table, like in a bronze to silver layer
stream process for example, you can reduce this value to avoid additional overhead
from the write operations. You could also increase the number of columns indexed
in cases where query behavior against wider tables varies considerably more than
would make sense to zorder by (anything more than a few columns is usually not
very beneficial). One other item to note here is that you can alter the table order
to directly place larger valued columns after the number of indexed columns using
ALTER TABLE CHANGE COLUMN (FIRST | AFTER).10

If you want to make sure statistics are collected on columns you add after the initial
table is created you would use the first parameter. You can reduce the number of
columns and move a long text column, for example, after something like a timestamp
column to avoid trying to collect statistics on the large text column and ensure that
you still include your timestamp information to take advantage of filtering better.
Setting each is fairly straightforward except you should note that the after argument
requires a named column.

## SQL
 
ALTER TABLE
    delta.`example`
    set tblproperties("delta.dataSkippingNumIndexedCols"=5);
ALTER TABLE
    delta.`example`
    CHANGE articleDate first;
ALTER TABLE
    delta.`example` CHANGE textCol after revisionTimestamp;

Partition Pruning and Data Skipping
So what’s the actual goal of optimizing partitioning and collecting file-level statistics?
The idea is to reduce the amount of data that needs to be read. Logically, the more
you can skip reading the faster you’ll be able to retrieve the results of a query. At a
surface level, you’ve already seen how statistics collection can be used to look for the
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maximum value of a column or count the number of records without needing to read
the actual files. This is because the read part of that operation was done when the
files were created and by storing that result in the metadata you get something like
you’d expect from cached results because you don’t have all of the overhead required
to re-read all of the data to compute the results. So that’s great but what about when
you’re doing something that isn’t so trivial as getting a count of the records?

The next best thing would be to skip reading as many files as possible to retrieve
results. Since these statistics are collected per file what you get is a set of boundaries
you can use to check for membership. Remember the statistics you had for our small
example table?

{
  "numRecords": 2,
  "minValues": {"id": 2, "name": "Customer 2"},
  "maxValues": {"id": 4, "name": "Customer 4"},
  "nullCount": {"id": 0, "name": 0}
}
{
  "numRecords": 2,
  "minValues": {"id": 1, "name": "Customer 1"},
  "maxValues": {"id": 3, "name": "Customer 3"},
  "nullCount": {"id": 0, "name": 0}
}

If you wanted to pull all of the records contained for Customer 1 then you can
easily see that you only need to read one of the two available files. That reduced the
workload by half just in this simple case. This begins to highlight the impact of some
of the points you’ve already seen, such as decisions you can make about file sizes or
partitioning, and really kind of brings together the larger point.

Knowing that this behavior exists you should try to target a partition layout and
column organization that can leverage these statistics to maximize the performance
according to your goals. If you are optimizing for write performance but frequently
have to backfill values with a merge function to some previous point in time, then you
will likely want to organize your data so that you can skip reading as many other days’
data as possible to eliminate wasted processing time.

Similarly, if you want to maximize read performance and you understand how your
end-users are accessing the data at the point of consumption then you can seek a
targeted layout that provides the most opportunity for skipping files at read time.
There were some other cautions about over-partitioning tables because of the addi‐
tional processing overhead, so next you’ll see how you can use zorder to impact
the downstream performance in conjunction with this knowledge of the statistics
contained in each file.
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Z-Order Revisited
File skipping creates great performance improvements by reducing the number of
files that need to be read for many kinds of queries. You might ask though: “How
does adding the clustering behavior from zorder by affect this process?” This
is fairly straightforward. Remember, z-ordering creates clusters of records using a
space-filling curve. The implication of doing this is that the files in your tables are
arranged according to the clustering of the data. This means that when statistics are
collected on the files you get boundary information that aligns with how your record
clusters are segregated in the process. So now when seeking records that align with
your z-ordered clusters you can further reduce the number of files that need to be
read.

You might further wonder how the clusters in the data get created in the first
place. Consider the goal of optimizing the read task for a more straightforward case.
Suppose you have a dataset with a timestamp column. If you wanted to create some
same-sized files with definite boundaries then a straightforward answer appears. You
can sort the data linearly by the timestamp column and then just divide it into chunks
that are the same size. What if you want to use more than one column though, and
create real clusters according to the keys instead of just some linear sort you could
have done on your own?

The more advanced task of using space-filling curves on multiple columns is not
so bad to understand once you see the idea, but it’s not as simple as the linearly
sorted case either. At least not yet it isn’t. That’s actually part of the idea. You need
to perform some additional work to construct a way to be able to similarly range
partition data across multiple columns. To do this you need a mapping function that
can translate multiple dimensions onto a single dimension so you can do the dividing
step just like in the linear ordering case. The actual implementation used in Delta
Lake might be a little tricky to digest out of context but consider this snippet from the
Delta Lake repository.

## Scala
object ZOrderClustering extends SpaceFillingCurveClustering {
  override protected[skipping] def getClusteringExpression(
    cols: Seq[Column], numRanges: Int): Column = {
    assert(cols.size >= 1, "Cannot do Z-Order clustering by zero columns!")
    val rangeIdCols = cols.map(range_partition_id(_, numRanges))
    interleave_bits(rangeIdCols: _*).cast(StringType)
  }
}

This takes the multiple columns passed to the z-order modifier and then alternates
the column bits to create a new temporary column that provides a linear dimension
you can now sort on and then partition as a range. Now that you know how it works,
consider a more discrete example that demonstrates this approach.

Performance Considerations | 153

https://github.com/delta-io/delta/blob/dc061f7b5b47ffb4cf980b445d85100690bedf05/spark/src/main/scala/org/apache/spark/sql/delta/skipping/MultiDimClustering.scala#L81


Lead by Example
Look at this example to see how the differences in the layout can affect the number
of files that need to be read with z-order clustering involved. In Figure 6-3 you have a
2- dimensional array within which you want to match data files. Both the x range and
the y range are numbered 1 to 9. The points are partitioned by the x values and you
want to find all of the points where both x and y are either 5 or 6.

First, find the rows that match the conditions x=5 or x=6. Then find the columns
matching the conditions y=5 or y=6. The points where they intersect are the target
values you want but if the condition matches for a file you have to read the whole file.
So for the files you read (the ones that contain matching conditions) you can sort the
data into two categories: data that matches your conditions specifically and extra data
in the files that you still have to read anyway.

Figure 6-3. With files laid out in a linear fashion you wind up reading extra records.

As you can see you have to read the entirety of the files (rows) where x=5 or x=6
to capture the values of y that match as well, which means nearly 80% of our read
operation was unnecessary.

Now update your set to be arranged with a space-filling z-order curve instead. In
both cases, you have a total of 9 data files, but now the layout of the data is such
that by analyzing the metadata (checking the min/max values per file) you can skip
additional files and avoid a large chunk of unnecessary records being read.
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Figure 6-4. Using a space-filling curve like a z-order curve reduces the number of files
and unneeded data reads required for operations.

After applying the clustering technique to the example you only have to read a single
file. This is partly why z-ordering goes alongside an optimize action. The data needs
to be sorted and arranged according to the clusters. You might wonder if you still
need to partition the data in these cases since the data is organized efficiently. The
short answer is “yes” as you may still want to partition the data, for example, in cases
where you are not using liquid clustering and might run into concurrency issues.
When the data is partitioned optimize and zorder will only cluster and compact data
already co-located within the same partition. In other words, clusters will only be
created within the scope of data inside a single partition, so the benefits of zorder still
directly rely on a good choice of partitioning scheme.
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11 There is a version of this written in Python to encourage additional exploration in the Chapter 12 section of
the book repository.

The method for determining the closeness, or cluster membership, relies on inter‐
leaving the column bits and then range partitioning the dataset.11

You can use these steps to accomplish this:

1. Create columns containing the coordinate positions as integers.1.
2. Map them to binary values.2.
3. Bitwise interleave the binary values.3.
4. Map the resulting binary values back to integers.4.
5. Range partition the new 1-dimensional column.5.
6. Plot the points by coordinates and bin identifier.6.
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12 For more technical details refer to Mohamed F. Mokbel, Walid G. Aref, and Ibrahim Kamel. 2002. Perfor‐
mance of multi-dimensional space-filling curves. In Proceedings of the 10th ACM international symposium
on Advances in geographic information systems (GIS ’02). Association for Computing Machinery, New York,
NY, USA, 149–154. https://doi.org/10.1145/585147.585179

Figure 6-5. Showing the results of a calculation to produce z-ordered clusters.

The results are shown in Figure 6-5. They don’t quite show the same behavior as
Figure 6-4 which is very neat and orderly, but it does clearly show that even with a
self-generated and directly calculated approach you could create your own zordering
on a dataset. From a mathematical perspective, there are more details and even
enhancements that could be considered but this algorithm is already built into Delta
Lake so for the sake of our sanity this is the current limit of our rigor.12

Performance Considerations | 157

https://doi.org/10.1145/585147.585179


13 This example comes from a fuller walkthrough highlighting how liquid clustering works to both split
apart larger partitions as well as to coalesce smaller ones, for the full example check out https://denny
glee.com/2024/02/06/how-delta-lake-liquid-clustering-conceptually-works/

More recently there have been questions about whether any table ought to be par‐
titioned so that there are fewer constraints on the further development of ideas
like z-ordering. This is partly because it can be very difficult to settle on the right
partitioning columns from the outset outside of highly static processes. Needs can
also change over time leading to added maintenance work in updating the table
structure (see the example if you need to do this). One development in this area may
reduce these maintenance burdens and decisions for good.

Cluster By
The end of partitioning? That’s the idea. The newest and best-performing method for
taking advantage of data skipping came in Delta Lake 3.0. Liquid clustering takes the
place of traditional hive-style partitioning with the introduction of the cluster by
parameter during table creation. Like zorder, cluster by uses a space-filling curve
to determine the best data layout but changes to other curve types that yield more
efficiency. Figure 6-6 shows how different partitions may either get coalesced together
or broken down in different combinations within the same table structure.

Figure 6-6. An example file layout resulting from applying liquid clustering on a data‐
set.13
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Where it starts to get different is in how you use it. Liquid clustering must be declared
during table creation to enable it and is incompatible with partitioning, so you can’t
define both. When set it creates a table property, clusteringColumns, which can be
used to validate liquid clustering is in effect for the table. Functionally, it operates
similarly to zorder by in that it still helps to know which columns might yield the
greatest filtering behaviors on queries, so you should still make sure to keep our
optimization goals in sight.

You also will not be able to zorder the table independently as the action takes place
primarily during compaction operations. A small side benefit worth mentioning is
that it reduces the specific information needed to run optimize against a set of tables
because there are no extra parameters to set, allowing you to even loop through a list
of tables to run optimize without worrying about matching up the correct clustering
keys for each table. You also get row-level concurrency, which is a must-have feature
for a partitionless table, which means that most of the time you can stop trying to
schedule processes around one another and reduce downtime since even optimize
can be run during write operations. The only conflicts that happen are when two
operations try to modify the same row at the same time.

File clustering, like the one shown in Figure 6-6, gets applied to compaction in
two different ways. For normal optimize operations it will check for changes to the
layout distribution and adjust if needed. This newer clustering enables a best-effort
application of clustering the data during write processes which makes it far more
reliably incremental to apply. This means less work is required to rewrite files during
compaction which also makes that process more efficient as well. This feature is
called eager clustering. This means that for data under the threshold (512GB by
default), new data appended to the table will be partially clustered at the time of the
write (the best effort part). In some cases, the size of these will vary from the larger
table until a larger amount of data accumulates and optimize is run again. This is
because the file sizes are still driven by the optimize command.

To use the cluster by argument you need at least a writer version
of 7 in a Delta Lake release with the liquid clustering table feature
present and enabled. To only consume the tables you need a reader
version of 3. This means that if you have other/older consumers
in the environment you are at risk of breaking workflows while
migrating to newer versions and protocols.

Explanation

Cluster by uses a different space-filling curve than zorder but without the presence
of partitions it creates clusters across the whole table. Using it is fairly straightforward
as you simply include a cluster by argument as a part of your table creation
statement. You must do so at creation or the table will not be compatible as a liquid
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partitioning table, it cannot be added afterward. You can, however, later update the
columns chosen for the operation or even remove all columns from the clustering
by using an alter table statement and cluster by none for the latter case (there’s
an example of this soon). This means you gain great flexibility with clustering keys
because they can be changed as needs arise or consumption patterns evolve.

As you’re creating tables that are optimized for either the downstream consumers or
for your write process this presents an area where you can make just such a decision
between the two. Similar to other cases, if the goal is to get the speediest write perfor‐
mance then you can elect not to include any clustering at all or as little as you wish.
For the downstream consumers though you gain a considerable advantage. You saw
in Chapter 6 that although it’s possible to re-partition a given table, it’s not the most
straightforward operation. Now you can adapt to downstream consumer needs more
optimally by redefining the clustering columns and this will be picked up during the
next compaction process to apply the layout to the underlying files. This means that
as usage patterns change, or even if you made questionable assumptions or errors
in your original layout, they become more easily rectifiable. The following examples
show how you can leverage liquid clustering in the Databricks environment.

If the initial write to a table is larger than 10TB, for example, if
you use a CTAS (Create Table As Select) statement to do a one-
time conversion, the first compaction operation can suffer from
performance issues and take some time to complete. The clustering
quality may also be affected somewhat. It is recommended to run
the process in batches for large tables as a result but otherwise,
even tables of 100TB can have liquid clustering applied to them.

Hopefully, it has become apparent that liquid clustering offers several advantages over
hive-style partitioning and zordering tables whenever it’s a good fit. You get faster
write operations with similar read performance to other well-tuned tables. You can
avoid problems with partitioning, You get more consistent file sizes which makes
downstream processes more resistant to task skewing. Any column can be a cluster‐
ing column and you gain much more flexibility to shift these keys as required. Lastly,
thanks to row-level concurrency, conflicts with processes are minimized allowing
workflows to be more dynamic and adaptable.

Examples

In this example, you’ll see the Wikipedia articles dataset found in the /databricks-
datasets/ directory available in any Databricks workspace. This parquet directory
has roughly 11GB of data (disk size) across almost 1100 gzipped files.

Start by creating a DataFrame to work with and add a regular date column to the set
then create a temporary view to work with in SQL afterward.
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## Python
 
articles _path = (
    “/databricks-datasets/wikipedia-datasets/” +
    “data-001/en_wikipedia/articles-only-parquet”)
 
parquetDf = (
    spark
    .read
    .parquet(articles_path)
)
parquetDf.createOrReplaceTempView("source_view")

With a temporary view in place to read from then to create a table you can simply
add the cluster by argument to a regular CTAS statement to define the table.

## SQL
create table
    example.wikipages
cluster by
    (id)
as (select *,
    date(revisionTimestamp) as articleDate
    from source_view
    )

Now you still have a normal statistics collection action to think about so you probably
want to exclude the actual article text from that process, but you also created the
articleDate column which you probably want to use for clustering. To do this you
can add the three following steps: reduce the number of columns you collect statistics
on to only the first 5, move both the articleDate and text columns, and then finally
define the new cluster by column. You can do all of these using alter table
statements.

## SQL
ALTER TABLE example.wikipages set tblproperties ("delta.dataSkippingNumIndexed
Cols"=5);
ALTER TABLE example.wikipages CHANGE articleDate first;
ALTER TABLE example.wikipages CHANGE `text` after revisionTimestamp;
ALTER TABLE example.wikipages CLUSTER BY (articleDate);

After this step, you can run your optimize command and everything else will be
handled for you. Then you can use a simple query like this one for testing:

## SQL
select
  year(articleDate) as PublishingYear,
  count(distinct title) as Articles
from
  example.wikipages
where
  month(articleDate)=3

Performance Considerations | 161



14 If you wish to dive more deeply into the mechanisms and calculations used to create bloom filter indexes
consider starting here: https://en.wikipedia.org/wiki/Bloom_filter.

and
  day(articleDate)=4
group by
  year(articleDate)
order by
  publishingYear

Overall the process was easy and the performance was comparable, only slightly
faster than the zordered Delta Lake table. The initial write for liquid partitioning also
took about the same amount of time. These results should be expected because the
arrangement is still basically linear. One of the biggest gains in value here, however,
is the added flexibility. If at some point you decide to revert to clustering by the
id column as in the original definition, you just need to run another alter table
statement and then plan for a bigger-than-usual optimize process later on. Whether
you end up using liquid clustering or rely on the familiar z-ordering, there’s still
an additional indexing tool you can put in place that further improves the query
performance of chosen tables.

Bloom Filter Index
A bloom filter index is a hashmap index that identifies whether or not a value
probably exists in a file or definitely does not.14 They are considered space efficient
because an index file containing the hashed value (in a single row) is stored alongside
the associated data file, and you can specify which columns you wish to be indexed.
The catch is that you want to have a reasonable idea of how many distinct values
need to be indexed because this will determine the length of hashes needed to avoid
collisions if it is set too small or to avoid wasting space if it is set too large.

Bloom filter indexes can be used by either parquet or Delta Lake tables in Apache
Spark even if they use liquid clustering. At runtime, Spark checks for the existence of
the directory and uses the index if it exists. It does not need to be specified during
query time.

A Deeper Look
A bloom filter index is created at the time of writing files, so this has some implica‐
tions to consider if you want to use the option. In particular, if you want all of the
data indexed then you should define the index immediately after defining a table but
before you write any data into it. The trick to this part is defining the index correctly
requires you to know the number of distinct values of any columns you want to
index ahead of time. This may require some additional processing overhead, but for
the example, you can add a count distinct statement and get the value as part of
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the process to accomplish this using only metadata (another Delta Lake benefit). Use
the same table from the cluster by example but now insert a bloom filter creation
process right after the the table definition statement (before you run the optimize
process).

## Python
 
from pyspark.sql.functions import countDistinct
 
cdf = spark.table("example.wikipages")
raw_items = cdf.agg(countDistinct(cdf.id)).collect()[0][0]
num_items = int(raw_items * 1.25)
 
spark.sql(f"""
    create bloomfilter index
    on table
        example.wikipages
    for columns
        (id options (fpp=0.05, numItems={num_items}))
    """)

Here the previously created table is loaded and you can bring in the Spark SQL
function countDistinct to get the number of items for the column you want to
add an index for. Since this number determines the overall hash length it’s probably
a good idea to pad it, like where raw_items is multiplied by 1.25 there was an
additional 25% added to get num_items, to allow for some growth to the table (adjust
according to your projected needs). Then define the bloom filter index itself using
SQL. Note that the syntax of the creation statement details exactly what you wish to
do for the table and is pretty straightforward. Then specify the column(s) to index
and set a value for fpp (more details are in the configuration section) and the number
of distinct items you want to be able to index (as already calculated).

Configuration

The fpp value in the parameters is short for false positive probability. This number
sets a limit on what rate of false positives is acceptable during reads. A lower value
increases the accuracy of the index but takes a little bit of a performance hit. This is
because the fpp value determines how many bits are required for each element to be
stored so increasing the accuracy increases the size of the index itself.

The less commonly used configuration option, maxExpectedFpp, is a threshold value
set to 1.0 by default, which disables it. Setting any other value in the interval [0,
1) sets the maximum expected false positive probability. If the calculated fpp value
exceeds the threshold the filter is deemed to be more costly to use than it is beneficial
and so is not written to disk. Reads on the associated data file would then fall back to
normal Spark operation since no index remains for it.
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You can define a bloom filter index on numeric types, datetime types, strings, and
bytes but you cannot use them on nested columns. The filtering actions that work
with these columns are: and, or, in, equals, and equalsnullsafe. One additional
limitation is that null values are not indexed in the process so filtering actions related
to null values will still require a metadata or file scan.

Conclusion
When you set out to refine the way you engineer data tables and pipelines with
Delta Lake, you may have a clear optimization target, or you might have conflicting
objectives. In this chapter, you saw how partitioning and file sizes influence the
statistics generated for Delta Lake tables. Further, you saw how compaction and
space-filling curves can influence those statistics. In any case, you should be well
equipped with knowledge about the different kinds of optimization tools you have
available to you in working with Delta Lake. Most specifically, note that file statistics
and data skipping are probably the most valuable tools for improving downstream
query performance and you have many levers you can use to impact those statistics
and optimize for any situation. Wherever your goal is this should prove to be a
valuable reference as you evaluate and design data processes with Delta Lake.
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CHAPTER 7

Successful Design Patterns

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 13th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

With the flexibility and applicability of Delta Lake to data applications, trying to
capture all of the cases for which you can use it is like trying to describe all of the
potential uses of paper. The variety feels limitless and its value is legion. That being
said, we do our best to capture exemplary cases highlighting some great uses of Delta
Lake and the value in doing so.

We will start by showing how the performance optimizations and simplified mainte‐
nance operations in Delta Lake helped Comcast slash the amount of resources they
needed to run their smart remote process by 10x. We then describe how Scribd
helped evolve the Delta Lake landscape and created the Delta Rust implementation,
which is 100x cheaper than the equivalent structured streaming applications. Finally,
we see how Delta Lake feeds high-volume operational CDC ingestion and supports
real-time workloads from Flink at DoorDash, creating a single source of truth lake‐
house from many different operational systems. Each section is accompanied by
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several resources you may wish to review to further explore the stories found here in
greater detail.

Slashing Compute Costs
The focus of this section reaches many audiences, literally! It’s no secret that there
has been somewhat of an eruption in the number of streaming entertainment services
over the last several years. Organizations supporting these kinds of services tend to
have large volumes of high throughput streaming data that they need to manage to
help support the service.

High-Speed Solutions
Streaming media services usually capture data from individual end-user devices
which includes several different components. To run such services successfully you
may require varying kinds of information about device health, application status,
playback event information, and interaction information. This usually translates to a
need for building high-throughput stream processing applications and solutions.

One of the most critical components in these streaming applications is ensuring the
capture of the data with reliability and efficiency. In Chapter 9 several implementa‐
tion methods and their benefits demonstrate how Delta Lake can play a critical role
in doing exactly these kinds of data capture tasks. Delta Lake is often the destination
for many of these ingestion processes because it has ACID transaction guarantees and
additional features like optimized writes that make high-volume stream processing
better and easier.

Let’s say you want to monitor the Quality of Service (QoS) across all of your users
in near real-time. To accomplish this task you usually need not just playback event
information, but also the relevant context from each user’s session, a sequence of
interactions bound together over some timespan. Sessionization is often an important
cornerstone to many downstream operations beyond ingestion and typically falls into
the data engineering stages of a larger data process as shown in Figure 7-1. With
session information and other system information in Delta Lake, you can power
downstream analytics use cases like quality of service measurement or trending item
recommendations while maintaining a low turnaround time in processing.
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1 For an extended exploration of a QoS solution end-to-end we suggest this blog with accompanying notebooks
from Databricks: https://www.databricks.com/blog/2020/05/06/how-to-build-a-quality-of-service-qos-analytics-
solution-for-streaming-video-services.html.

2 “Winning the Audience with AI: How Comcast Built An Agile Data And Ai Platform At Scale | (Comcast)”.
Spark + AI Summit 2019. Accessed Nov. 6 2023 https://www.youtube.com/watch?v=5sDH_dJqoYo

Figure 7-1. A reference architecture for Quality of Service monitoring with Delta Lake.1

Building out these pipelines is often fairly complex and will involve the interaction
of multiple pipelines and processes. At the core, you will find that each component
boils down to the idea of needing to build a robust data processing pipeline to serve
multiple business needs.

Smart Device Integration
Comcast developed a successful smart remote control device to change the way peo‐
ple watch television. The crux of the data problem they had is that this kind of system
requires large amounts of data processing and several technical and organizational
challenges. Through the use of Delta Lake as a data format, many of these challenges
were overcome and they were able to slash their cloud infrastructure requirements,
for one of their most critical workloads, by 90%. They were also able to solve many
quality-of-life issues around these data processes. Here you can see how they solved
many of those challenges.

Comcast’s Smart Remote
Comcast is the largest American multinational telecommunications and media con‐
glomerate, and here you can see how they were able to drastically reduce the amount
of cloud resources required to run their most important workloads.2 Comcast has
strived toward changing how people interact with their televisions through their
voice remote which acts as a central point of access. So, as you might expect, there are
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a lot of critical data workloads that center around the device at the edge. Figure 7-2
shows a high-level example of the interaction flow.

Figure 7-2. Comcast’s smart remote control provides an alternative interface for enter‐
tainment.

Before exploring how they’re building their solutions on Delta Lake, it might be
useful to review more specific information about the scale of their operations. Com‐
cast drives interactions through the Xfinity(R) smart remote and their customers
used this remote 14 billion times in 2018-2019 (Figure 7-3 illustrates the relative
scale to data processing). Users expect many things in their experience with the
applications like accurate searches and feeling enabled to find the right content for
consumption. The user’s experience should also have elements of personalization that
make the experience their own. With the voice remote users can interact with the
whole system; anything is just a quick phrase away. On top of this, they use user data
to create personalized experiences.

Consider the technical components essential to running such services behind the
scenes. First, receiving voice commands as input (something that’s exploded in popu‐
larity more recently) is a technically challenging problem. There’s the transformation
of voice to a digital signal which then has to be mapped to each needed command.
There’s often an additional component to this mapping of correcting for intent. Is
it more likely for someone to search for a show called “How It’s Made” or are they
asking about other shows about how some particular thing is made? If it is a search
command there is still a need to find similar content through a matching algorithm.
All of this gets wrapped together into a single interface point in a setting where the
user experience needs to be measured against accuracy so getting bits of data about
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3 For a more robust treatment of embeddings see, e.g. Marcos Garcia; Embeddings in Natural Language
Processing: Theory and Advances in Vector Representations of Meaning. Computational Linguistics 2021; 47
(3): 699–701. doi: https://doi.org/10.1162/coli_r_00410

these processes and enabling analytics to assess immediate problems or long-term
trends is also critical.

So now we have voice inputs that have to be converted to embedding vectors (vectors
of numeric data capturing semantic meaning as “tokens”) as well as contextual data
(this could be what type of page the user is on, other recent searches, date-time
parameters, etc.) for each interaction with the remote.3 The goal is to collect all this
and provide inference back through the user interface (UI) in nearly real-time. From
a functional standpoint, there’s also a large amount of telemetry information that
needs to be collected to maintain insights into things like device health, connectivity
status, viewing session data, and other similar concerns.

Once the problem of getting this data from individual devices to a centralized
processing platform is solved there are still additional challenges in deciding how
to standardize the data sources as multiple versions of devices may have differing
available information or usage regions may have differing collection laws that mean
fuller or lesser contents of captured events. Downstream from standardization, there
is still a need to organize the data and create actionable steps in a fit-for-function
format.

Expecting all of this to happen from a single team would require a huge amount
of effort and a lengthy amount of time so enabling multiple teams to collaborate to
tackle the complexity would be beneficial if not an absolute necessity.

Earlier Attempts
To support the voice remote Comcast needed to be able to analyze queries and look
at user journeys to do things like measure the intention of a query. At a rate of up to
15 million transactions per second, Comcast needed to enable sessionization across
billions of sessions on multiple Petabytes of data. Running on native AWS services
they would overrun limits and increase the concurrency they were using until they
were eventually running 32 concurrent job runs across 640 virtual machines to be
able to get to the scale they needed for sessionization. The processing flow is shown
in Figure 7-3. This led them to seek a scalable, reliable, and performant solution.
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Figure 7-3. To scale the earlier data ingestion pipeline Comcast had to crank up the
concurrency.

Delta Lake Reduces the Complexity
Delta Lake was built to help solve exactly these kinds of problems. ACID transactions
and support for multiple writers with features like optimized writes and autocompac‐
tion each play a role in simplifying and overcoming the challenges involved with
large-scale stream processing tasks. Enabling additional features like delta.randomFi
lePrefixes for high transaction rates with cloud providers allows you as an engineer
to achieve massive scale with optimal efficiency. By making this change Comcast was
able to run the same ingestion process with a single Spark job on just 64 virtual
machines. The resulting process flow is shown in Figure 7-4.
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Figure 7-4. Delta Lake provides the foundation for optimized ingestion and sessioniza‐
tion.

If this was the whole story you would probably already be convinced of the value
Delta Lake can bring to ease processing burdens. What’s great is that’s not the whole
story. In their Databricks environment, Comcast was able to readily access this
sessionized data for multiple downstream purposes.

It was mentioned already that in building a process like this different kinds of
machine learning tasks like the creation of embedding vectors or model inference
may be involved. In particular, there would be a need to transform that voice input
into meaningful action. By capturing the sessionized data and storing it efficiently,
data scientists can build modeling pipelines quickly and easily.

MLflow, another open-source product, offers many features for
improving the end-to-end MLOps process. Some of MLflow’s key
features include tracking and comparing multiple model versions
in experiments, a registry for management, and mechanisms ena‐
bling the easier deployment of model objects. This also includes
specific support for Large Language Models (LLMs) through some
of the more recently added features.

Since Comcast is using MLFlow they get additional side benefits from Delta Lake
in their machine learning processes. With the data source tracking available in the
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4 To compare the entire capabilities for tracking different kinds of files in MLflow experiments we
suggest this section of their documentation: https://mlflow.org/docs/latest/python_api/mlflow.data.html?high
light=delta#mlflow-data

experiment for a project MLflow can track information about the Delta Lake table
being used for the experiment without having to make a copy of the data in the
same way as you would with a CSV file or other data sources.4 Since Delta Lake
also has time travel capabilities, machine learning experiments can have enhanced
reproducibility which would benefit anyone maintaining data science products in
production.

Figure 7-5. Delta Lake helps enable reliable end-to-end MLOps processes.

Another important target is to be able to monitor the telemetry data involved for
QoS or other similar types of analytical applications. In Comcast’s case, they used
Databricks SQL to run analytical workloads directly on their Delta Lake tables instead
of in Redshift as they had previously. They reported for a pilot of this approach they
chose their 10 worst performing queries to evaluate the performance. They observed
a huge reduction in query runtime latency of over 70%.
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Figure 7-6. Performance comparison results for query running times in Databricks SQL
on Delta Lake vs Redshift.

In the end, it’s looking to be highly advantageous for Comcast to continue innovating
with Delta Lake. They’ve so far experienced huge savings gains in their data ingestion
processes and have a promising outlook on improving reporting. Overall this should
allow them to improve end-user experiences for their smart remotes further and
increase overall satisfaction rates.

Efficient Streaming Ingestion
Suppose you have some large ingestion pipelines running on Kafka and Databricks to
feed your Delta Lake environment. Now suppose you have a crack engineering team
that decides to invest significant efforts into reducing costs by crafting a solution for
small streams that don’t require the heavy-lifting capabilities of Spark. You also want
to bring all of that data together downstream from those ingestion processes. What
you might be looking for then is something like the team at Scribd has done.

Streaming Ingestion
Stream processing applications for ingestion tasks are relatively common. We have
a large array of streaming frameworks out there to choose from. Among the most
common ones are the open-source Apache Kafka, Kinesis from AWS, Event Hubs
in Azure, and Google’s Pub/Sub. One reason for this is a general trend towards
streaming data applications.

While there is certainly a wide variety of applicability covering interesting subjects
like real-time telemetry monitoring of IoT devices and fraudulent transaction moni‐
toring or alerting, one of the most common cases for stream processing is large-scale
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5 Many teams document their own journey of landing streaming data sources in Delta Lake, for example, the
Michelin team captured a step-by-step implementation guide to building a Kafka+Avro+Spark+Delta Lake
in a Microsoft Azure environment: https://blogit.michelin.io/kafka-to-delta-lake-using-apache-spark-streaming-
avro/

6 Architecture diagram comes from this Databricks blog post accessed 2023-12-07: https://www.databricks.com/
blog/2022/09/12/simplifying-streaming-data-ingestion-delta-lake.html

7 Our use here of the term “artificial intelligence” is used in the classical software development sense of
narrow AI meaning the application of machine learning algorithms to make automated business decisions
without human interaction, see e.g. https://hai.stanford.edu/sites/default/files/2023-03/AI-Key-Terms-Glossary-
Definition.pdf.

8 Refer to the section on the medallion architecture in Chapter 11 or Chapter 9 for more details on implement‐
ing stream processing applications and Delta Lake.

and dynamic data ingestion.5 For many organizations collecting data about activi‐
ties by end-users on mobile applications or point-of-sale (POS) data from retailers
directly translates to success in supporting mission-critical business analytics applica‐
tions. Acquiring large amounts of data from widely dispersed sources quickly and
correctly allows businesses to become more rapidly adaptable to changing conditions
as well (Figure 7-7 shows a unified architecture across many streaming sources).

Figure 7-7. An example reference architecture diagram for stream processing applica‐
tions with a Delta Lake sink from Databricks.6

Great flexibility, through the enablement of real-time processes and the use of artifi‐
cial intelligence applications, is fueled by dynamic and resilient data pipelines often
falling into this category.7 In all of these, there’s usually an element of capturing
inbound data for later analytical or evaluation purposes, so while there might be
additional components in some processing pipelines at the end of the day this process
applies to most stream processing applications.8
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Figure 7-8. A simplified streaming data ingestion architecture for IoT devices specific to
Kafka

Consider the case of IoT data coming in from devices. If you send all the data into
Kafka you can build a Spark application to consume that stream and capture all of the
original data as it is received following the model of the medallion architecture. Then
you can create business-level reporting and send those results out to be consumed in
a downstream application. Naturally, there are many variations on this approach, but
the general pipeline model is similar. At Scribd, this application was so common they
built a new framework around implementing this process.

The Inception of Delta Rust
While it started as an open publishing platform, now Scribd is a digital document
library, with over 170M documents in over 150 categories and counting. Part of their
mission is to change the way the world reads. They aim to do so by providing a wide
range of reading material at a fair price for both creators and consumers, providing
intellectual property protection for creators and keeping costs low, preferring to build
their brand on community rather than advertising.

Inherent to its existence as a digital library, Scribd runs its website as well as
mobile applications. Users can use Scribd’s website and mobile applications to browse
through a digital library with millions of presentations, research papers, templates,
and many other kinds of documents. All of the documents in the library are uploa‐
ded by creators, writers, and editors using multiple common document formats
like .pdf, .txt, .doc, .ppt, .xls, and .docx. There is also a subscription system. All of
these different system components translate to events that have to be collected and
handled accordingly. At Scribd, they accomplish this using a fairly large number of
event streams through Kafka.

Efficient Streaming Ingestion | 175

https://www.scribd.com/


Building a streaming ingestion pipeline typically requires multiple components.
Putting this into the immediate context a straightforward design approach would
be to build a stream processing application for each topic stream coming from
Kafka. In the case of Scribd, we can easily build a list of some of the probable event
topic streams: creator uploads, reading events, system log-in or authentication events,
subscription events, web traffic events, searches, item bookmarking or saving events,
and item sharing events. This means many different stream processing applications
will be involved which usually leads to the development of some kind of framework
to reduce development and maintenance overhead across all the applications.

Maintaining a stream processing framework for many event streams can be quite a
complex task, and, without careful planning, quite expensive as well. Here is the story
of the evolution of Scribd’s stream processing framework leading up to their creation
of the kafka-delta-ingest library and how they cut their ingestion costs by 95%.

Evolution of Ingestion
The stream processing platform at Scribd has been revamped a couple of different
times. Early on all the processing was done in Kafka and Hadoop, which used to be
a fairly standard stream processing approach. This version of the platform was later
subsumed by a move to Kafka and Databricks using Spark Structured Streaming and
Delta Lake. This was a favorable move for Scribd, partly because of Delta Lake’s fea‐
tures, like the optimize and vacuum utilities and the addition of ACID transactions.

However, in Scribd’s case, there were many topic streams and many of them were
also on the small side. This led to some attempts to reduce spiraling ingestion costs.
One natural approach is to stack multiple stream processing applications on the same
cluster. This allows you to make use of cluster resources more optimally. At Scribd,
larger dedicated clusters were still used “when it didn’t seem wasteful” to do so,
i.e. when there were large tasks that efficiently utilized the cluster resources. Many
small streams were instead stacked (run simultaneously on the same cluster) which
produces a similar level of efficient resource utilization and thus reduces overall pro‐
cessing costs. There are still some challenges in doing this though. Making decisions
about how to logically group topics can be frustrating. There’s always the possibility
that one of the processing tasks could fail, causing all the stacked streams on that
cluster to subsequently fail. This is in addition to the already slightly challenging task
of trying to accommodate maintenance tasks in your ingestion processes.

The Scribd team had a few desires for improving the situation:

• further reducing the costs if possible•
• different observability of the ingestion processes•
• better handling of job failures•
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• more flexible adjustment to changes in the throughput size of event streams•

This also led to thoughtful reflection on how they might approach the problem.
Would it be possible to do this without Spark or find some more minimal overhead
method? How would they still maintain their standardization on Delta Lake since it
made stewardship so much easier?

To the Scribd team at the time, it seemed like with some invested effort, there
might be another way to approach the problem. They have relatively simple ingestion
processes that are append-only operations with no filters, joins, or aggregations and
only use a subset of Delta Lake’s features, which proved to simplify the development
of an alternative.

The scenario at Scribd led to their investment in developing two projects that are
now well-supported and accepted parts of the larger Delta Lake ecosystem. The
first project is delta-rs, the Rust-based implementation of the Delta Lake protocol
explored in depth in Chapter 5. The second project is kafka-delta-ingest, a light‐
weight companion framework designed to quickly and easily ingest data from a Kafka
topic stream into a Delta Lake table. Together they form an efficient operating pair
(Figure 7-9 shows the simplified data flow).

Figure 7-9. Scribd’s kafka-delta-ingest in tandem with delta-rs for efficient inges‐
tion.

Undertaking such an endeavor was not without risks or potentially blocking issues.
The risk of corrupting the delta log posed one challenge, as did the need to manually
control offset tracking in Kafka to avoid duplicate or dropped records. They also need

Efficient Streaming Ingestion | 177

https://github.com/delta-io/delta-rs
https://github.com/delta-io/delta/blob/master/PROTOCOL.md
https://github.com/delta-io/kafka-delta-ingest


9 Some of these S3 issues are discussed in the D3L2 web series episode “The Inception of Delta Rust” on
Youtube: https://www.youtube.com/watch?v=2jgfpJD5D6U.

10 AWS r5 type metrics can be found here: https://aws.amazon.com/ec2/instance-types/r5/

to support multiple writers, and some limitations in AWS S3 require specific handling
(e.g. S3 lock coordination).9

Scribd runs anywhere from 70-90 of these kafka-delta-ingest and delta-rs pipe‐
lines in production. They run serverless computation of these pipelines through AWS
Fargate and monitor everything in Datadog. Some of the things they monitor include
message deserialization logs and several metrics: the number of transformations,
failures, the number of arrow batches in memory, the sizes of parquet data files
written, and the current time lag in Kafka streams.

Figure 7-10. Some of the cost-saving examples Scribd shared during Data+AI Summit
2022 where they compare the cost of running a process originally in Spark and then
similarly using delta-rs. The Rust resources show vCPUs and memory allocation whereas
the Spark clusters use entire EC2 instances, r5.large instances as shown each has 2
vCPUs and 16GB RAM.10

All of this led to rather significant cost savings in ingestion processing as with the
tools the Scribd team built the cost for running some of the stream processing
applications is reduced to as little as 100 times lower. Another feature that rounds out
this fantastic achievement is that this is accomplished in such a way (by remaining
standardized on Delta Lake) that the ingested data is immediately available for analyt‐
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ics and machine learning processes or further integration with other batch processes
in their Databricks environment and it maintains queryability.

Coordinating Complex Systems
From smart devices and entertainment to security and digital payment systems, there
is no shortage of high-volume data sources. With Scribd, much of the focus was
on simple event capture with less stress on the operational systems where kafka-delta-
ingest is a viable solution. Now let’s consider cases where the edge of interaction
with the outside world is less straightforward and requires more services. It’s more
messy and more human. Complex applications that continuously evolve tend to have
many more integrated operational components that need to stay in harmony over
time or you might find yourself spending more time curating existing data instead
of thinking about new requirements, sources, or processes as you would probably
prefer.

Figure 7-11. Retail merchant credit transactions present just one area where we might
see complex system interactions.

The inclusion of multiple, real-time, operational databases and the demand for gener‐
ating business value often means that the information from those databases needs
to be collected into a unified location for the development of analytics and machine
learning applications. Other systems may not have operational databases but rely on
event-driven systems. Oftentimes this data will be needed in conjunction with data
from other systems creating a relatively complex data ecosystem, like customer trans‐
action data with anonymized trend data available on the open market for example.
Figure 7-11 shows how you combine data sources such as these to support multiple
downstream applications. Relying on a lakehouse format like Delta Lake with its
broad array of connectors for different systems reduces this complexity and enables
analytical and artificial intelligence-based applications.
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11 If you want to spend more time exploring CDC, also known as logical log replication, we suggest Designing
Data Intensive Applications by Martin Kleppmann (O’Reilly).

Combining Operational Data Stores at Doordash
Many people have found themselves in situations where it would be convenient
if someone could help them pick up meals, groceries, electronics, or pretty much
anything else for them and maybe save themselves a trip out. DoorDash helps to
fill all kinds of needs by providing flexibility and convenience through their delivery
services. While most are familiar with their “gig” based operating methodology, it
may be helpful to note a couple of particular points to consider.

There are multiple parties involved in the purchase process through DoorDash.
Typically there are the requesters, people who make deliveries, and restaurants or
merchants who will prepare orders or make products available. Without even step‐
ping into the larger IT ecosystem of the DoorDash organization there is already an
apparent need for large-scale low-latency data pipelines, i.e. streaming data applica‐
tions because each “event” itself is a collation of many events as it steps through the
process.

DoorDash is leveraging Delta Lake as part of its data ecosystem in two ways. The
first is to simplify the management of large-scale Change Data Capture (CDC)
and downstream exposure of data for analytics. The second is supporting real-time
workloads in Flink. Both capture some of the benefits of utilizing Delta Lake in your
architectural designs.

Change Data Capture
Change Data Capture, or CDC, is a common application pattern that often needs to
be supported for a variety of reasons.11 At DoorDash they use CDC for replication
of operational databases supporting multiple services into the analytical environment.
This is driven by a historical need to be able to answer a question: “How many orders
did DoorDash do yesterday?” Earlier on this was an easier task as the solution to
answering the question could be accomplished by creating a copy of the database and
using queries against the copy to answer analytical questions or perform data science
tasks.

As DoorDash grew their service architecture evolved leading to an environment with
multiple operational databases that also come in multiple flavors like CockroachDB,
PostgreSQL, and Apache Cassandra. Seeking to get data from these databases in
the simplest way they initially got snapshots from the databases and pulled them in
daily. While this approach worked it did pose problems, specifically tracking data
versioning and a need to filter the snapshots to incrementalize the data process
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efficiently. After trying various changes in the environment the team eventually set
out to develop a more robust system.

The key system requirements for our purpose were:

• Less than a day of data latency•
• Use a Lakehouse design pattern•
• Support schema evolution•
• Allow for data backfilling•
• Enable analytical workloads•
• Write once read many times•
• Avoid late-arriving data•
• Build with open-source software•

The design that arose from these requirements is a streaming CDC framework built
on Spark Structured Streaming that replicates change feeds into a unified source of
truth built on Delta Lake that supports downstream integrations across a wide range
of query interfaces. Features like merge support and ACID transactions helped make
Delta Lake a critical component of the design.

Figure 7-12. The design of DoorDash’s CDC-enabled Lakehouse architecture.
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The success of this design could be measured in many ways but there are several the
team highlights. The system supports 450 streams (one-to-one with tables) running
24/7 on over 1000 EC2 nodes. This translates to about 800GB ingested daily from
Kafka with a total daily processing volume of about 80TB. The design far exceeded
the initial requirements and attained a data freshness of less than 30 minutes. They
have enabled the self-service creation of tables for data users in the environment
which become available in less than an hour.

Delta and Flink in Harmony
With real-time events being of central importance to DoorDash, their heavy use
of Kafka is hardly surprising. Apache Spark is a natural choice for many stream
processing applications; however, it’s not the only choice. Some teams at DoorDash
use Apache Flink for many real-time processes, and, therefore, it should also be
easily supportable. In Chapter 5 you saw how the Flink/Delta Connector works
operationally but here it could be useful to see how this can be pulled into a larger
data ecosystem to provide both flexibility and reliability.

The real-time platform team at DoorDash is managing Petabytes of vital customer
events every day and needs to provide a platform to enable data users and applica‐
tions to capture, create, or access this information. Adding the Flink/Delta Connector
extends the number of ways that users and applications can interact with Delta Lake
which combines the fast operational nature of Flink with a storage format built to
handle exactly those kinds of workloads and provides a common format useable
across the whole data platform even while different teams choose to leverage different
application processing frameworks.

Figure 7-13. The starting state of processes at DoorDash before moving to Delta Lake.
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This is exactly what this change at DoorDash enabled, easy integration with their
current tooling with the addition of ACID guarantees at massive scale. Previously
this process was taking place with regular Parquet files which adds additional com‐
plications in the form of write-locks and other challenges. Additionally, the quality
of life improvements gained through easy-to-use compaction operations and the
ability to do these operations while stream processing applications are still running is
highly valuable. As is the efficiently queryable state achieved through the inclusion of
z-ordering clusters on the data.

Figure 7-14. The resulting state of the data ecosystem at DoorDash after moving to Delta
Lake.

The moral of the story of the DoorDash decision to adopt Delta Lake is this: even
for data systems with multiple types of tooling operating at massive scale and need
to support things like efficiently capturing data from real-time event streams or the
changes coming through operational databases Delta Lake provides reliability and
usability making it a winning choice.

Conclusion
Data applications come in many different forms and formats. Authoring those data
applications can be complex and painful. Here you’ve seen a few ways to alleviate this
pain through the many benefits of Delta Lake. In particular, the features of Delta Lake
help create a robust data environment that supports broad tooling choices, reduces
costs, and improves your quality of life as a developer.
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